NUREG/CR-2722

2 8 1982

BPA - REG. VII AREM - ANUP NNA - CITY, MO

Radiological Survey of the West Lake Landfill St. Louis County, Missouri

Prepared by L. F. Booth, D. W. Groff, G. S. McDowell, J. J. Adler, S. I. Peck, P. L. Nyerges, F. L. Bronson

Radiation Management Corporation

Prepared for U.S. Nuclear Regulatory Commission

and the second

40057827 SUPERFUND RECORDS

0714

Westlake Ldf Hobo79900932 17.8 NRC

7-28-82

NOTIVE

This report was prepared as an appendix of the second seco

MAGENA

e ng shine in shi

se in

. 25

40.50

(কিংক্ট

the second second

en marine

Available from

GPO Sales Program Vision of Technical Information and Document Control U. S. Nuclear Regulatory Commission Washington, D. C. 20555

Printed copy price: \$6.00

and

National Technical Information Service Springfield, Virginia 22161

Sec. Sec.

NUREG/CR-2722

Radiological Survey of the West Lake Landfill St. Louis County, Missouri

2 2 2 2		
1 Sieo: W	estlala	rgei !!
[።]	00079	900932
Break	_16_	b
) Other:		İ
ji		(<u></u>)

Manuscript Completed: April 1982 Date Published: May 1982

....

. Кл. (

> Prepared by L. F. Booth, D. W. Groff, G. S. McDowell, J. J. Adler, S. I. Peck, P. L. Nyerges, F. L. Bronson

Radiation Management Corporation 3356 Commercial Avenue Northbrook, IL 60062

Prepared for Division of Fuel Cycle and Material Safety Office of Nuclear Material Safety and Safeguards U.S. Nuclear Regulatory Commission Washington, D.C. 20555 NRC FIN B6901

ABSTRACT

1

ी _अस्त ३ . म

Ξ

L

7

This report presents the results of a radiological survey of the West Lake Landfill, St. Louis County, Missouri, performed by Radiation Management Corporation during the spring and summer of 1981. Measurements were made to determine external radiation levels, concentrations of airborne contaminants and the identity and concentrations of subsurface deposits. Results indicate that large volumes of uranium ore residues, probably originating from the Hazelwood, Missouri, Latty Avenue site, have been buried at West Lake Landfill. Two areas of contamination, the covering more than 15 acres and located at depths of up to 20 feet below the present surface, have been identified. There is no indication that significant quantities of contaminants are moving off-site at this time.

iii

TABLE OF CONTENTS

``;**'**

ç,

•

· . •

2

ē. F

I.	INTRODUCTION1
II.	SITE CHARACTERISTICS
III.	RADIOLOGICAL SURVEY METHODS6
IV.	SURVEY RESULTS11
v.	CONCLUSIONS20
	APPENDIX I

LIST OF FIGURES

+ . *

, P , S

1.	Aerial view of West Lake Landfill, St. Louis County	
	Missouri.	25
2.	West Lake Landfill aerial survey isopleths.	26
3.	External gamma radiation levels, November, 1980.	27
4.	External gamma radiation levels, May, 1981.	28
5.	Grid locations for radiological survey, Area l.	29
б.	Grid locations for radiological survey, Area 2.	30
7.	Location of surface soil samples, Area 1.	31
8.	Location of surface soil samples, Area 2.	32
9.	Location of auger holes Area 1.	33
10.	Location of auger holes Area 2.	34
11.	Auger hole NaI(Tl) count rate vs IG <u>in situ</u> measurements.	35
12.	Location of subsurface contamination and surface radiation levels, Area 1.	36
13.	Location of subsurface contamination and surface radiation levels, Area 2.	37
14.	Auger hole elevations and locations of contamination.	38
15.	Cross section A-A of subsurface deposits in Area 1.	39
16.	Cross section B-B of subsurface deposits in Area 1.	39
17.	Cross section C-C of subsurface deposits in Area 2.	40
18.	Cross section D-D of subsurface deposits in Area 2.	41
19.	Cross section E-E of subsurface deposits in Area 2.	42
20.	Radon-222 flux measurements, at 3 locations in Area 2, for May, 1981.	43

vi

List of Figures, cont.

÷.,

â

3

I . .

ŝ

۹ ج .

I-1	Portable survey instrument kit.	119
I-2	High sensitivity tissue equivalent ionization chamber system.	120
I-3	Plot of ionization chamber exposure rates versus NaI(Tl) count rate.	121
I-4	Interior of mobile laboratory.	122
I-5	In situ auger hole system with intrinsic germanium detector.	123
I-6	Radon sampling cells, pump and gas analyzer.	124
I-7	Automatic gas flow beta-gamma counter.	125

LIST OF TABLES

১

.

1.	Gamma radiation levels and beta-gamma count rates at grid locations in Area 1.	<i>ሲ</i> ሲ
2.	Gamma radiation levels and beta-gamma count rates at grid locations in Area 2.	47
3.	Surface soil sample gamma analyses.	56
4.	Uranium and thorium radiochemical soil determinations.	58
5.	Auger hole NaI counts and IG analyses.	59
б.	Water sample analysis results.	73
7.	Radon flux measurements using the accumulator method.	75
8.	Radon flux measurements using the charcoal canister method.	79
9.	Side-by-side radon flux measurements, accumulator method vs charcoal canister method.	80
10.	Working level (WL) and long-lived gross alpha activity on high volume air samples.	81
11.	Gamma analysis of high volume air samples for Rn-219 daughters.	83
12.	Priority pollutant analyses of auger hole and leachate sludge samples.	84
13.	Chemical analysis of radioactive material from Areas 1 and 2.	109
14.	Summary of background measurements, in vicinity of West Lake Landfill.	110
15.	Target criteria and measurements LLDs for West Lake Landfill	111

I. INTRODUCTION

In August 1980, Radiation Management Corporation (RMC), under contract to the U.S. Nuclear Regulatory Commission (NRC), performed radiological evaluations of four burial grounds[1]. The first of these sites selected for evaluation was the West Lake Landfill in St. Louis County, Missouri. An initial site visit was completed in August 1980, and a preliminary radiological survey was completed in November 1980. The detailed radiological evaluation was performed in the spring and summer of 1981.

The purpose of this survey was to clearly define the radiological conditions of the West Lake Landfill site. The results of this survey should be sufficient to allow an engineering evaluation to be performed to determine whether remedial actions should and can be taken.

The methods used to evaluate this site include the following:

- measurement of external gamma exposure rates 1 meter above the surfaces and beta-gamma count rates 1 cm above surfaces;
- measurement of radionuclide concentrations in surface soils;
- measurement of radionuclide concentrations in subsurface deposits;
- 4) measurement of gross activity and

.

radionuclide concentrations in surface and subsurface water samples;

- 5) measurement of radon flux emanating from surfaces;
- 6) measurement of airborne radioactivity; and
- measurement of gross activity in vegetation.

These measurements were performed on-site using two mobile facilities designed by RMC. A small number of samples were returned to the RMC radiological laboratories in Philadelphia for analysis for nuclides which could not be detected in the field, and for quality assurance checks on the field measurements. A set of reference background measurements were made at three locations in the St. Louis area, near West Lake Landfill. In addition, a series of non-radiological measurements were performed to identify the possible presence of toxic or hazardous agents known or believed to have been buried at this landfill.

II. SITE CHARACTERISTICS

-

۲. ۲

> The West Lake Landfill is located on St. Charles Rock west of the Taussig Road intersection in Road iust Bridgeton, Missouri. The site is about one (1) mile northwest of Route 270 and approximately 1-1/2 miles east of is located the Missouri River. Τt in а combined rural-industrial area, and is bounded on three sides by farm land and on the fourth by St. Charles Rock Road, beyond are located several commercial and industrial which establishments. The nearest residential area is a trailer park located about 3/4 of a mile southeast of the landfill.

> The site is approximately 200 acres and consists of a quarry, stone and limestone processing and storage areas, and several active and inactive landfills (Figure 1), which are open to the public during normal working hours. West Lake Landfill keeps track of entries for the purpose of assessing fees for disposal; however, access is not controlled for other reasons. Users are prohibited from disposing of hazardous materials at this site by current Missouri state law.

> Studies indicate the landfill is on the alluvial floodplain of the Missouri River. This fact prompted the Missouri Geological Survey, in 1973, to propose classification of the site as hazardous under the then existing operating procedures. In addition, samples from perimeter monitoring wells taken in 1977 and 1978

indicated some movement of leachate into monitoring wells, based on chemcial (not radiological) analyses. However, recent studies by the Department of Natural Resources indicate little or no surface or sub-surface movement of materials from the site[2]. Leachate from the active sanitary landfill is collected and treated on-site. At this time there is no evidence of significant ground water contamination; however, geological reports indicate a potential for such problems.

In May 1976, the St. Louis Post-Dispatch[3] printed a story alleging that radioactive material had been erroneously dumped in the West Lake Landfill in 1973. The source of this material was identified as the Cotter Corporation, Hazelwood, Missouri, Latty Avenue Site.

An NRC investigation conducted by Region III in 1976 [4] concluded that about 7 tons of U308, contained in 8700 tons of leached barium sulfate residues, had been mixed with about 39,000 tons of soil at Latty Avenue and the entire volume disposed of at the West Lake Landfill. The earlier study by the Post-Dispatch (1976) claimed only 9000 tons (presumably the leached barium sulfate residues) had been buried, and that the remaining material had not been disposed of at West Lake. The Post-Dispatch alleged that the contractor hauling the dirt had admitted falsifying invoices for about 40,000 tons of soil. Discussions with site personnel indicated that a large quantity of soil from Latty Avenue had indeed been dumped at West Lake, although

the exact amount was unknown.

1

· . .

ر ب ،

> A fly-over radiological survey (ARMS flight), performed for the NRC in 1978, showed external radiation levels as high as 100 uR/hr in the area indicated by West Lake personnel as containing the Latty Avenue material. In addition, this survey revealed another possibly contaminated zone in a fill area previously believed to be "clean".

> Figure 2 shows the results of the 1978 aerial survey. The area in the southeast fill was believed to contain Latty Avenue material, while that on the northeast boundary was previously unidentified.

> In addition to radioactive material, it is known that hazardous chemical wastes have been disposed of at this landfill. Since disposal was unregulated prior to 1973, little is known about the actual materials present. However, it is believed that aside from normal landfill materials, there are chemical industrial wastes in the landfill.

Among	the	chemical	wastes	believed	to be	present	are:
,	waste	e ink		halog	genate	d interm	ediates
]	pigme	ents		aroma	atics		
	oily	sludges		oils			
ſ	ester	S		waste	ewater	sludges	
i	alcor	nols		heavy	y meta	ls	
:	insec	ticides		herbi	cides		

III. RADIOLOGICAL SURVEY METHODS

(A) Measurement of External Radiation Levels

The two areas of contamination were gridded and surveyed for both gamma radiation levels at one meter above the surface, and beta-gamma levels at the ground surface.

The basic pattern at each contaminated area was survey defined by a 10 meter grid system. External gamma blocks levels at one meter were recorded at each grid point (i.e. at each intersection of two grid lines). Initially, precise exposure rate measurements at a few specially selected grid were made with a sensitive Tissue Equivalent points Ionization Chamber System (described in Appendix I). At the same time, NaI scintillation detector (described in Appendix I) measurements were made and a conversion factor for the NaI count rate versus uR/hr established (See Figure I-3). Once this factor was confirmed, the scintillation detector was used for all grid measurements at relatively low exposure rates. For the few higher rates encountered, a Geiger-Mueller portable survey instrument was used.

At each grid point, an end window G-M tube (described in Appendix I) was used for surface measurements. An open and closed window reading was made at 1 cm, and the ratio of the two used to indicate the presence or absence of surface contamination.

(B) Measurement of Surface Radioactivity

· · •

, ÷

Based on the external surface measurements, surface soil samples were collected for analysis from both contaminated areas. These samples were collected from locations on-site where surface deposits were indicated, as well as locations where the drainage characteristics indicated the possibility that radioactive materials may have been carried or washed away from original burial locations. The soils were dried, ground and sealed in 500 ml aluminum cans for counting on the intrinsic germanium (IG) gamma ray spectroscopy system (described in Appendix I).

Vegetation on-site consisted only of grass and common weeds. Off-site, crops are grown on farm land immediately north and west of the site. Since the possibility of contamination exists here, crop samples were collected where indicated by surface measurements. These samples were dried, crushed and counted as described above.

(C) Measurements of Subsurface Radioactivity

Since it was known that most, or all, of the radioactive materials at the West Lake Landfill have been buried, extensive subsurface monitoring and sampling was required. The purpose of this activity was to determine the depth and lateral extent of subsurface contamination.

A series of holes through and bordering the contaminated deposits were drilled and lined with 4-inch PVC

casing. Each hole was then scanned with a 2" by 2" NaI(Tl) scintillation detector and rate meter system.

Representative holes were then logged using an <u>in</u> <u>situ</u> gamma measurement system consisting of an intrinsic germanium (IG) detector coupled to a multichannel analyzer (described in Appendix I). Field analyses were then made, both qualitatively and quantitatively, thereby eliminating time consuming laboratory analyses and expensive core sampling of each hole. Measurement intervals ranged from 6" to 24", depending upon factors such as hole depth and activity. An occasional core sample was taken to verify the <u>in situ</u> measurements and to confirm the presence or absence of non-gamma emitting nuclides such as Th-230.

(D) Measurement of Radioactivity in Water

Whenever possible, water samples were taken from the bore holes and two off-site monitoring wells. Samples were also taken from standing water, run off water, and leachate liquids. Samples were filtered, evaporated and counted for gross activity, or were filtered and sealed in Marinelli beakers for gamma spectroscopic analysis.

(E) Measurement of Airborne Radioactivity

Measurements were made to determine if the material buried on-site is a source of airborne radioactivity. The isotopes of concern are Ra-226, Ra-224 and/or Ra-223, which decay to Rn-222, Rn-220 and Rn-219. This may result in the

emanation of radon from the soil, and movement of radon and daughters off-site.

4

These measurements may be used to determine Rn flux emanation as a source term for off-site dose calculations, or as an indication of the presence of radium at or below the surface. Additional on-site Rn daughter measurements were made to perform working level (WL) determinations.

Radon flux measurements which are to be related to off-site dose calculations were of no value for Rn-219, due to its very short (4 sec) half-life. Therefore, only its long-lived daughters are of concern for off-site exposures. In addition, if the parent (Ra-223) is not within a few millimeters of the surface, Rn-219 is not likely to emanate into the atmosphere [5].

Due to these considerations, only Rn-222 and Rn-220 fluxes were measured. The principal measurement technique was collection of a filtered gas sample from an accumulator and subsequent counting in a radon gas analyzer (described in Appendix 1). Sequential alpha counting, starting immediately after sampling, allowed separation of Rn-222 from Rn-220 (if present). Repetitive samples were taken from several locations during the survey period in an effort to evaluate the effect of fluctuations between individual measurements, due to varying meteorological and soil conditions. A second method using charcoal canisters was also employed as a check on the accumulator technique.

The presence of Rn-219 was determined by detection of its daughters deposited on high volume particulate sample filters, using gamma spectroscopy. Total Rn daughter levels were also estimated by gross alpha activity on particulate filters. From this, a total working level (WL) determination was made.

IV. SURVEY RESULTS

(A) External Radiation Levels

Two areas of elevated external radiation levels have been identified by this survey. Figure 3 shows the two areas as they existed in November, 1980, at the time of the preliminary RMC site survey. As can be seen, both areas contained locations where levels exceeded 100 uR/hr at 1 meter, and in Area 2, gamma levels as high as 3-4 mR/hr were detected. The total areas exceeding 20 uR/hr were about 3 acres in Area 1 and 9 acres in Area 2.

External gamma levels measured in May and July of 1981 are shown in Figure 4. These levels had decreased significantly, especially in Area 1, due to continuing activities at the landfill. In both cases, contaminated areas were covered with additional fill material. RMC estimates that about 4 feet of sanitary fill was added to the entire area denoted as Area 1, and that an equal amount of construction fill was added to most of Area 2. As a result, only a small region of a few hundred square meters uR/hr. In Area 2, the total area in Area 1 exceeds 20 exceeding 20 uR/hr decreased by about 10%, and the highest levels are now about 1600 uR/hr, near the Shuman building.

Both areas were marked off in a 10 m by 10 m grid, based on a north-south line erected from a boundary marker, as laid out by a surveying team, as a reference line. Grid

designations are shown in Figures 5 and 6. At each grid point, external gamma levels at 1 m, and beta-gamma count rates at 1 cm, were measured. Results of these measurements are given in Tables 1 and 2.

Beta-gamma measurements at 1 cm from the surface are given in count rates, rather than dose rates, due to the difficulty in measuring beta dose rates accurately with end window G-M tubes. Large differences between open- and closed-window readings indicate the possibility of surface contamination. Little surface contamination was found in Area 1, as would be expected due to fresh land fill cover over nearly the entire area.

Several isolated spots of surface contamination in Area 2 were indicated by beta-gamma measurements, and later confirmed by surface soil sampling. These spots are generally located near the northwest edge of Area 2, which includes the berm that bounds the landfill at that point. Some erosion and run-off is evident along the top of the fill, apparently uncovering deposits of radioactive material in the process. Thus far, fresh construction fill has not been added here, due to the inaccessibility of these spots.

A second region of surface contamination is found just north of the Shuman building. It is not clear why material appears on the surface here, except that it is possible that some digging or excavation has occurred here in the past.

(B) Surface Soil Analyses

1 : •

5

A total of 61 surface soil samples were gathered and analyzed on-site for gamma activity. Samples were normally stored 10 to 14 days to allow ingrowth of radium daughters. Concentrations of U-238, Ra-226 (from PB-214 and Bi-214), Ra-223, Pb-211 and Pb-212 were determined for each sample. Locations of surface soil samples are shown in Figures 7 and 8, and the results in Table 3.

In all soil samples nothing other than uranium and/or thorium decay chain nuclides and K-40 was detected. Off-site background samples were on the order of 2 pCi/g for Ra-226. On-site samples ranged from about 1 to 21,000 pCi/g Ra-226, and from less than 10 to 2,100 pCi/g U-238. In those cases where elevated levels of Ra-226 were detected, the concentrations of U-238 were generally anywhere from a factor of 2 to 10 lower. In cases of elevated sample activity, daughter products of both U-238 and U-235 were found.

In general, surface activity was limited to Area 2, as indicated by the surface beta-gamma measurements. Only two small regions in Area 1 showed contamination, both located near the access road across from the site offices.

In addition to on-site gamma analyses, a set of 12 samples were submitted to the RMC radiochemical laboratories for thorium and uranium radiochemical determinations. The

results of these measurements are shown in Table 4. They show that all samples contain high levels of Th-230. The ratio of Th-230 to Ra-226 (Bi-214) is about 20, which indicates an "enrichment" of thorium in these residues, as discussed in Section V.

(C) Subsurface Soil Analysis

Subsurface contamination was assessed by extensive "logging" of holes drilled through the landfill at locations known or thought to contain radioactive materials. Several holes were drilled in areas known to contain contamination, then additional holes were drilled outward in all directions until no further contamination was encountered. A total of 43 holes were drilled, (ll in Area 1 and 32 in Area 2), including 2 off-site water monitoring wells. All holes were drilled with a 6-inch auger and lined with 4-inch PVC casing. The location of these auger holes is shown in Figures 9 and 10.

Each hole was scanned with a 2-inch by 2-inch NaI(T1) detector and rate meter system for an initial indication of the location of subsurface contamination. Based on the initial scans, certain holes were selected for detailed gamma logging using the IG detector and MCA. A total of 19 holes were logged in this manner.

The results of the NaI(Tl) counts and IG analyses are shown in Table 5. Concentrations of Bi-214, as determined

by the IG system, ranged from less than 1 to 19,000 pCi/g. For those holes where both NaI(Tl) and IG counts were made, a good correlation between gross NaI(Tl) counts and Ra-226 concentrations, as determined by in situ analysis of the daughter Bi-214 by the IG system, was found. Figure 11 is a plot of NaI(Tl) count rate versus IG determination of Ra-226, and shows a nearly linear relationship between the at concentrations near the action criteria. The two conclusion is that the NaI(Tl) data is a good estimation of the Ra-226 concentration in soil, so long as the radionuclide mix is reasonably constant. In the case of West Lake Landfill, this has been shown to be the case.

. . .

It was determined that the subsurface deposits extended beyond areas where surface radiation measurements exceeded action criteria. Figures 12 and 13 show the approximate area of subsurface contamination versus the area of elevated surface radiation levels. The total difference in areas is on the order of 5 acres.

The variations of contamination with depth are shown in Figure 14. As can be seen, the surface elevations vary by about 20 feet, with the highest elevations at locations of fresh fill. Contamination (> 5 pCi/g Ra-226) is found to extend from the surface, in several areas, to a depth of about 20 feet below surface, in two cases. In general, the subsurface contamination appears to be a continuous single layer, ranging from two to fifteen feet thick, located

between elevations of 455 feet and 480 feet and covering 16 acres total area.

In Figures 15-19, representations of the subsurface deposits are provided based on auger hole measurements. These representations are consistent with the operating history of the site, which suggests that the contaminated material was moved onto the site within a few days' time, and spread as cover over fill material. Thus, one would expect a fairly continuous, thin layer of contamination, as indicated by survey results.

(D) Water Analyses

A total of 37 water samples were taken during this survey, 4 in the fall of 1980, and the remainder in the spring and summer of 1981. Results of water analyses are shown in Table 6.

None of the sample alpha activities exceeded the MPC for Ra-226 (the most restrictive nuclide present) in water for unrestricted areas. Only one sample exceeded the EPA gross alpha activity guidelines for drinking water and that was a sample of standing water near the Shuman building. Several samples, including all the leachate treatment plant samples, exceeded the EPA gross beta drinking water standards. Subsequent isotopic analyses indicated that all the beta activity can be attributed to K-40. None of the off-site samples exceeded either EPA standard.

(E) Airborne Radioactivity Analyses

ſ.

4

· . .

. ۲

> Both gaseous and particulate airborne radioactivity were sampled and analyzed during this study. Since it was known that the buried material consisted partially or totally of uranium ore residues, the sampling program concentrated on measuring radon and daughters in the air. Two methods were used: the first was a scintillation flask method for radon gas and the second was analysis of filter paper activity for particulate daughters.

> A series of grab samples using the accumulator method (described in Appendix I) were taken between May and August of 1981. A total of 111 samples from 32 locations were collected. Results can be found in Table 7. Radon flux levels ranged from 0.2 pCi/sq.m-s in low background areas to 868 pCi/sq.m-s in areas of surface contamination.

> At three locations, repetitive measurements were made over a period of two months. These results are plotted in Figure 20. As can be seen, significant fluctuations were observed at two locations. The fact that these fluctuations were real and not measurement artifacts was later confirmed by duplicate charcoal canister samples, as described below.

> A total of 35 charcoal canister samples were gathered at 19 locations over a three month period. The results are listed in Table 8, and show levels ranging from 0.3 pCi/sg.m-s to 613 pCi/sg.m-s. On 24 different occasions,

the charcoal canisters and accumulator were placed in essentially the same locations, at the same time, for duplicate sampling. The results of this side-by-side study are presented in Table 9, and show generally good correlation between the two methods.

A set of 10 minute high volume particulate air samples were taken to determine both short-lived radon daughter concentrations and long-lived gross alpha activity. Sample results are shown in Table 10. The highest levels were detected in November, 1980, near and inside the Shuman building. Only these two samples exceed MPC for radon daughters for unrestricted areas.

In addition to the routine 10 minute samples, five 20 minute high volume air samples were taken and counted immediately on the IG gamma spectroscopy system. The purpose of these analyses was to detect the presence of Rn-219 daughters. All samples were taken near surface contamination and are listed in Table 11. In addition to Rn-222 daughter gamma activities, Rn-219 daughters were detected by measuring the low abundance gamma rays of Pb-211. Concentrations of Rn-219 daughters ranged from 6E-11 uCi/cc to 9E-10 uCi/cc.

(F) Vegetation Analysis

Vegetation samples included weed samples from on-site locations and farm crop samples (winter wheat) from the

northwest boundary of the landfill. This location was chosen due to possible run off from the fill into the farm field. No elevated activities were found in these samples.

(G) Non-Radiological Analysis

٠. .

zⁱ

Six composite samples were submitted to the RMC Environmental Chemistry Laboratory for priority pollutant analysis. Five samples were taken from auger holes (one from Area 1 and four from Area 2) and the sixth from the West Lake leachate treatment plant sludge. The results, shown in Table 12, indicate a significant presence of organic solvents in Area 2 samples. The results of the leachate sludge analysis were not as high as any of the soil samples.

A chemical analysis of radioactive material from both areas was also performed by RMC labs and reported in Table 13. Results show elevated levels of barium and lead in most cases.

(H) Background Measurements and Remedial Action Criteria

Various off-site locations were selected for reference background measurements. The results of these measurements are summarized in Table 14, and can be compared with the established NRC target criteria for remedial action, for this project, shown in Table 15.

V. <u>CONCLUSIONS</u>

Based on survey results, it is evident that the West Lake Landfill contains two areas of surface and/or subsurface contamination. These deposits yield detectable external radiation levels in both areas. However, only an area of less than 0.1 acre in Area 1 exceeds 20 uR/hr, while about 8 acres in Area 2 exceeds the 20 uR/hr criteria. The highest reading detected in the most recent survey was 1.6 mR/hr in Area 2, near the Shuman Building.

Analyses of soil samples from both areas, as well as in situ measurements, show that the contaminants present at West Lake consist of uranium and uranium daughters. Chemical analyses reveal high concentrations of barium and sulfates in the radioactive deposits. These results tend to confirm the reports that this contaminated material is uranium and uranium ore, contained in leached barium sulfate residues, and presumably transferred from the Latty Avenue Site in Hazelwood, Missouri.

Analysis of soils also shows a high Th-230 to Ra-226 ratio. Since the target criteria for Ra-226 is the most restrictive of those contaminants present, it has been assumed that Ra-226 would be the controlling radionuclide for remedial action determinations. However, since Th-230 levels may be from 5 to 50 times higher than Ra-226 concentrations, this assumption may be erroneous. It is likely that high concentrations of thorium resulted from

separation of both uranium and radium from the ores, thus "depleting" the ores of uranium and radium, or, "enriching" the residues in thorium. This "enrichment" would also be evident in the U-235 chain, despite the short half-lives of Th-227 and Th-231, since the long-lived Pa-231 would remain in the residues. The concentrations of Pa-231, inferred from Ra-223 determinations, are also shown to be high.

•...

ï

Auger hole measurements show that nearly all the contamination present is located below the landfill surface, although a few locations near the northwest berm in Area 2 show surface, or near surface, deposits. These deposits range from 2 to 15 feet in thickness, and appear to form a contiguous layer covering an area of about 14 acres (68,000 sq.yd.) in Area 2 and about 2 acres (10,000 sq.yd.)in Area l. If an average thickness of 2 yards is assumed, the estimated total volume is 150,000 cu.yd., which corresponds to roughly 170,000 tons of soil. This implies that if the source of contamination was the Latty Avenue material, the original volume of 40,000 tons has been diluted by a factor of about 4, which is not unexpected, with the continual movement and spreading of materials during fill operations.

As discussed previously, the auger hole measurements detected deposits exceeding 5 pCi/g Ra-226 within a few feet of the surface, in areas where surface external radiation levels were indistinguishable from normal background levels.

These results confirm suspected difficulties in detecting buried materials with surface measurements, even when using relatively sensitive portable survey instruments.

At no time has radioactivity in off-site water samples any applicable guidelines. been above These results indicate that the buried ore residues are probably not soluble and are not moving off-site via ground water. Onsite samples have shown some gross beta activity above EPA drinking water quidelines (attributable to K-40); however, gross alpha and Ra-226 levels are within limits. The absence of significant contamination in the leachate liquid or sludge is consistent with the implication that the buried material is not moving through the landfill.

As would be expected, radon flux emanation rates were highest at locations of surface, or near surface, contamination. At locations where the material is covered by several feet of fill, flux levels are near background rates.

Particulate air samples established indicated the presence of Rn-222 and Rn-219 daughters near the locations of surface deposits. However, concentrations are very low, and do not exceed allowable levels for unrestricted areas, except in one location. In general, cover of a few feet of fill reduces airborne concentrations to near background levels.

The fact that West Lake is an active landfill presents several serious problems for performing radiological assessments and remedial actions. In the first place, as the landfill conditions change, so do the surface radiological characteristics. These changes were evident in the reduction of radiation levels in Area 1 between November 1980, and May 1981. It is possible that future landfill activities will obscure all detectable surface radiation levels at the site.

٨

•...

, T , ,

REFERENCES

• •

- [1] U. S. Nuclear Regulatory Commission Letter Contract: NRC-02-080-034, August 13, 1980.
- [2] Missouri Department of Natural Resources, "Groundwater Investigation, West Lake Landfill, St. Louis County, September 30 through October 1, 1980."
- [3] St. Louis Post-Dispatch, May 30, 1976.
- [4] U. S. Nuclear Regulatory Commission, Office of Inspection and Enforcement, Region III, IE Inspection Report No. 76-01, June and August, 1976.
- [5] Crawford, D. J., "Radiological Characteristics of Rn-219", Health Physics, Vol. 39, No. 3, pp. 450.

.

>

Figure 1. Aerial view of West Lake Landfill, St. Louis County, Missouri

:--

Figure 2. West Lake Landfill aerial survey isopleths.

St. CHARLES ROCK ROAD

:•

St. CHARLES ROCK ROAD

٦.

- .

Figure 5. Grid locations for radiological survey, Area 1.

Figure 6. Grid locations for radiological survey, Area 2.

٩,

.

,

,

Figure 7. Location of surface soil samples, Area 1.

Figure 8. Location of surface soil samples, Area 2.

. .

• •

Figure 9. Location of auger holes, Area 1. Lines A-A and B-B indicate cross sectional areas shown in Figures 15 and 16.

~

Figure 10. Location of auger holes, Area 2. Lines C-C, D-D, and E-E indicate cross sectional areas shown in Figures 17, 18, and 19.

ω 4

.

- .

Figure 11. Auger hole NaI (T1) count rate versus Ra-226 concentration, as determined by the I.G. in situ measurements. Data is from bore holes 16, 32, 22, 21, 31, 6, 19 and 20.

ω σ

Figure 12. Location of subsurface contamination and surface radiation levels, Area 1. The shaded area shows a lateral contour for 5pCi/g Ra-226, regardless of depth. The cross hatched area shows the surface locations which exceed 20uR/hr at 1 meter.

Figure 13. Location of subsurface contamination and surface radiation level, Area 2. The shaded area shows a lateral contour for 5pCi/g Ra-226, regardless of depth. The cross hatched area shows the surface location which exceeds 20uR/hr at 1 meter.

Figure 15. Cross section A-A (from Figure 9) showing subsurface deposits in Area 1. The blackened areas indicate the estimated extent of contamination exceeding 5pCi/g Ra-226, based on surface and auger hole measurements.

Figure 16. Cross section B-B (from Figure 9) showing subsurface deposits in Area 1. The blackened areas indicate the estimated extent of contamination exceeding 5pCi/g Ra-226, based on surface and auger hole measurements.

Figure 17. Cross section C-C (from Figure 10) showing subsurface deposits in Area 2. Blackened areas indicate the estimated location of contamination exceeding 5pCi/g Ra-226, based on surface and auger hole measurements.

۰.

Figure 18. Cross section D-D (from Figure 10) showing subsurface deposits in Area 2. Blackened areas indicate the estimated location of contamination exceeding 5pCi/g Ra-226, based on surface and auger hole measurements.

Figure 19. Cross section E-E (from Figure 10) showing subsurface deposits in Area 2. Blackened areas indicate the estimated location of contamination exceeding 5pCi/g Ra-226, based on surface and auger hole measurements.

.*.

Figure 20. Radon-222 flux measurements at three locations in Area 2, for May, 1981.

Table l

Gamma Radiation Levels and Beta-Gamma Count Rates at Grid Locations in Area 1 • *

;

GOODE 1000 10 30 40 HOODE 900 9 60 50 JODE 1200 11 30 50 JODE 800 8 40 40 KODE 800 8 20 30 MODE 100 11 20 30 MODE 800 8 40 40 NODE 760 7 40 30 POOH 1100 10 50 50 POOJ 1100 10 50 50 QOOT 1000 10 40 30 QOOT 1000 10 40 50 QOOT 1100 10 40 50 DOOF 900 9 40 50 DOOF 900 9 40 40 GOOF 900 9 40 40 GOOF 900 9 40	Grid Location	NaI Count Rate (c/min)	Exposure Rate (uR/hr)	Beta-Gamma Count Rate w/window (c/min)	Beta-Gamma Count Rate w/o window (c/min)
HODE 900 9 60 50 HODE 1200 11 30 50 JODE 800 8 40 40 KODE 800 8 20 30 LODE 1200 11 20 30 MODE 800 8 40 40 NODE 760 7 40 30 POOH 1100 10 50 50 POOI 1200 11 40 30 QOUT 1000 10 50 50 POOJ 1200 11 40 60 POOK 1100 10 40 30 QOOK 1200 11 30 50 DOOF 900 9 30 40 EOOF 1100 10 40 40 JOOF 900 9 40 40 HOOF 1000 10 40 <td>G00E</td> <td>1000</td> <td>10</td> <td>30</td> <td>40</td>	G00E	1000	10	30	40
TODE 1200 11 30 50 JODE 800 8 40 40 KODE 800 8 20 30 LODE 1200 11 20 30 MODE 800 8 40 40 NODE 760 7 40 30 POOH 1100 10 50 50 POOJ 1200 11 40 30 Q001 1000 10 50 50 Q003 1100 10 50 50 Q004 1200 11 30 50 Q007 1000 10 40 60 POOF 900 9 30 40 EOOF 900 9 40 40 HOOF 1000 10 40 40 JOOF 900 9 40 40 JOOF 900 9 40	HOOE	900	9	60	50
JODE BOO B 40 40 KODE 800 8 20 30 LODE 1200 11 20 30 MODE 800 8 40 40 NODE 760 7 40 30 POOH 1100 10 50 50 POOI 1200 11 40 30 QOUJ 1000 10 50 50 POOK 1100 10 40 30 QOUX 1200 11 40 60 POOK 1000 10 40 30 QOUX 1200 11 30 50 DOUF 900 9 30 40 EOOF 1100 10 40 40 DOUF 900 9 40 40 HOOF 1000 11 40 40 HOOF 1000 10 40<	TOOE	1200	11	30	50
KODE BOO B 20 30 LODE 1200 11 20 30 MODE 800 8 40 40 NODE 760 7 40 30 POOH 1100 10 50 50 POOH 1200 11 40 30 Q001 1000 10 50 50 POOJ 1100 10 40 30 Q00X 1200 11 30 50 COOP 900 9 40 50 DODF 900 9 40 50 DOOF 900 9 40 40 GOOF 900 9 40 40 HOOF 1200 11 30 40 GOOF 900 9 40 40 HOOF 1200 14 40 40 JOOF 2000 16 40	100E	800		40	40
LODE 1200 11 20 30 MODE 800 8 40 40 NODE 760 7 40 30 POOH 1100 10 50 50 POOH 1200 11 40 30 Q001 1200 11 40 30 Q001 1200 11 40 60 POOJ 1100 10 50 50 Q00X 1200 11 30 50 COOF 900 9 40 50 DOF 900 9 40 50 FOOF 1100 10 40 40 GOOF 900 9 40 40 GOOF 900 9 40 40 GOOF 900 11 40 40 HOOF 1000 10 40 60 GOOF 2000 16 40 <td>KOUE</td> <td>800</td> <td>8</td> <td>20</td> <td>30</td>	KOUE	800	8	20	30
BOOD FRO FRO <td>LOOE</td> <td>1200</td> <td>11</td> <td>20</td> <td>30</td>	LOOE	1200	11	20	30
NODE 760 7 40 30 POOH 1100 10 50 50 POOI 1200 11 40 30 QOOI 1000 10 50 50 POOJ 1100 10 50 50 QOOK 1200 11 40 60 POOF 900 9 40 30 QOOK 1200 11 30 50 COOF 900 9 40 50 DOF 900 9 40 40 GOOF 900 9 40 40 GOOF 900 9 40 40 HOOF 1200 11 30 40 GOOF 900 9 40 40 JOOF 2000 16 40 50 KOOF 2700 20 50 50 LOOF 1000 10 20 <td>MOOE</td> <td>800</td> <td>8</td> <td>40</td> <td>40</td>	MOOE	800	8	40	40
POOL 100 10 50 50 POOI 1200 11 40 30 QOUI 1200 11 40 30 QOUJ 1200 11 40 60 POOK 1100 10 50 50 QOUJ 1200 11 40 60 POOK 1100 10 40 30 QOOK 1200 11 30 50 COOF 900 9 30 40 EOOF 1100 10 40 50 DOOF 900 9 40 40 GOOF 900 9 40 40 HOOF 1000 10 40 40 JOOF 2000 16 40 50 LOOF 2100 17 40 60 MOOF 1000 10 20 30 FOOG 100 10 <td< td=""><td>NOOE</td><td>760</td><td>7</td><td>40</td><td>30</td></td<>	NOOE	760	7	40	30
POOL PAOL PAOL <th< td=""><td>POOH</td><td>1100</td><td>10</td><td>50</td><td>50</td></th<>	POOH	1100	10	50	50
Q001 1000 10 50 50 P00J 1100 10 50 50 Q00J 1200 11 40 60 P00K 1100 10 40 30 Q00K 1200 11 30 50 C00F 900 9 40 50 D00F 900 9 30 40 E00F 1100 10 40 50 F00F 900 9 40 40 H00F 1000 10 40 40 H00F 1000 10 40 40 J00F 2000 16 40 50 L00F 1000 10 40 60 M00F 1000 10 40 60 M00F 1000 10 30 60 M00F 1000 10 30 60 G00G 90 9	POOT	1200	11	40	30
PO0J 1100 10 50 50 Q00J 1200 11 40 60 PO0K 1100 10 40 30 Q00K 1200 11 30 50 C00F 900 9 40 50 D00F 900 9 30 40 E00F 1100 10 40 50 F00F 1200 11 30 40 G00F 900 9 40 40 H00F 1000 10 40 40 H00F 1000 11 40 40 J00F 2000 16 40 50 K00F 2700 20 50 50 L00F 1000 10 40 60 M00F 1500 12 60 60 M00F 1000 10 20 30 F00G 1000 10 <	0001	1000	10	50	50
Q00J 1200 11 40 60 PO0K 1100 10 40 30 Q00K 1200 11 30 50 Q00F 900 9 40 50 D00F 900 9 30 40 E00F 1100 10 40 50 F00F 1200 11 30 40 G00F 900 9 40 40 G00F 900 9 40 40 G00F 1000 10 40 40 G00F 1200 11 40 40 J00F 2000 16 40 50 K00F 2700 20 50 50 L00F 1000 10 40 60 M00F 1500 12 60 60 N00F 1000 10 20 30 F00G 1000 10 <th< td=""><td>POOJ</td><td>1100</td><td>10</td><td>50</td><td>50</td></th<>	POOJ	1100	10	50	50
POOR 1100 10 40 30 QOOK 1200 11 30 50 COOF 900 9 40 50 DOOF 900 9 30 40 EOOF 1100 10 40 50 FOOF 1200 11 30 40 GOOF 900 9 40 40 GOOF 900 9 40 40 GOOF 900 11 30 40 GOOF 900 11 40 40 HOOF 1000 10 40 40 JOOF 2000 16 40 50 KOOF 2700 20 50 50 LOOF 1000 12 60 60 MOOF 1500 12 60 60 OOOF 800 8 30 30 FOOG 1000 10 20<	000J	1200	11	40	60
QOOK 1200 11 30 50 COOF 900 9 40 50 DOOF 900 9 30 40 EOOF 1100 10 40 50 FOOF 1200 11 30 40 GOOF 900 9 40 40 HOOF 1200 11 40 40 HOOF 1000 10 40 40 JOOF 2000 16 40 50 KOOF 2700 20 50 50 LOOF 2100 17 40 60 MOOF 1000 10 20 30 FOOG 1000 10 20 30 FOOG 1000 10 20 30 FOOG 1000 10 30 60 GOOG 900 9 40 40 HOOG 1000 10 <td< td=""><td>POOK</td><td>1100</td><td>10</td><td>40</td><td>30</td></td<>	POOK	1100	10	40	30
COOF 900 9 40 50 DOOF 900 9 30 40 EOOF 1100 10 40 50 FOOF 1200 11 30 40 GOOF 900 9 40 40 HOOF 1000 10 40 40 HOOF 1200 11 40 40 JOOF 2000 16 40 50 KOOF 2700 20 50 50 LOOF 2100 17 40 60 MOOF 1500 12 60 60 MOOF 1000 10 20 30 EOOG 1100 10 20 30 FOOG 1000 10 30 60 GOOG 900 9 40 40 HOOG 1000 10 30 40 HOOG 1000 10 <td< td=""><td>000K</td><td>1200</td><td>11</td><td>30</td><td>50</td></td<>	000K	1200	11	30	50
DOOF 900 9 30 40 EOOF 1100 10 40 50 FOOF 1200 11 30 40 GOOF 900 9 40 40 GOOF 900 10 40 40 HOOF 1000 10 40 40 JOOF 200 16 40 40 JOOF 2000 16 40 50 KOOF 2700 20 50 50 LOOF 2100 17 40 60 MOOF 1500 12 60 60 NOOF 1000 10 20 30 FOOG 1000 10 20 30 FOOG 1000 10 20 40 HOOG 1000 10 30 30 JOOG 100 10 30 40 HOOG 1000 11 <t< td=""><td>COOF</td><td>900</td><td>9</td><td>40</td><td>50</td></t<>	COOF	900	9	40	50
E00F 1100 10 40 50 F00F 1200 11 30 40 G00F 900 9 40 40 H00F 1000 10 40 40 H00F 1200 11 40 40 J00F 2000 16 40 50 K00F 2700 20 50 50 L00F 2100 17 40 60 M00F 1500 12 60 60 N00F 1000 10 40 60 C00F 800 8 30 30 F00G 1100 10 20 30 F00G 1000 10 30 40 H00G 1000 10 30 40 H00G 1000 11 30 30 J00G 1200 11 30 40 K00G 1600 13	DOOF	900	9	30	40
F00F 1200 11 30 40 G00F 900 9 40 40 H00F 1000 10 40 40 I00F 1200 11 40 40 J00F 2000 16 40 50 K00F 2700 20 50 50 L00F 2100 17 40 60 M00F 1500 12 60 60 M00F 1000 10 40 60 C00F 800 8 30 30 F00G 1000 10 20 30 F00G 1000 10 20 40 H00G 1000 10 30 30 J00G 1200 11 30 30 J00G 1000 10 30 40 K00G 1600 13 60 70 L00G 1300 11	EOOF	1100	10	. 40	50
GOOF 900 9 40 40 HOOF 1000 10 40 40 IOOF 1200 11 40 40 JOOF 2000 16 40 50 KOOF 2700 20 50 50 LOOF 2100 17 40 60 MOOF 1500 12 60 60 NOOF 1000 10 40 60 OOOF 800 8 30 30 E00G 1100 10 20 30 F00G 1000 10 30 60 G00G 900 9 40 40 H00G 1000 10 30 30 J00G 1200 11 30 30 J00G 1000 10 30 40 K00G 1600 13 60 70 L00G 1300 11 <	FOOF	1200	11	30	40
H00F 100 10 40 40 I00F 1200 11 40 40 J00F 2000 16 40 50 K00F 2700 20 50 50 L00F 2100 17 40 60 M00F 1500 12 60 60 N00F 1000 10 40 60 000F 1000 10 20 30 F00G 1000 10 20 30 F00G 1000 10 20 40 H00G 1000 10 20 40 H00G 1000 10 20 40 H00G 1000 10 30 30 J00G 1200 11 30 30 J00G 1600 13 60 70 L00G 1300 11 40 50 N00G 1300 11 30 40 O00G - - 50 40 <	GOOF	900	9	40	40
IOOF 1200 11 40 40 JOOF 2000 16 40 50 KOOF 2700 20 50 50 LOOF 2100 17 40 60 MOOF 1500 12 60 60 NOOF 1000 10 40 60 OOOF 800 8 30 30 EOOG 1100 10 20 30 FOOG 1000 10 30 60 GOOG 900 9 40 40 HOOG 1000 10 20 40 HOOG 1000 10 30 30 JUOG 1200 11 30 30 JUOG 1300 11 40 50 MOOG 2200 17 60 50 MOOG 1300 11 30 40 OOOG - - <td< td=""><td>HOOF</td><td>1000</td><td>10</td><td>40</td><td>40</td></td<>	HOOF	1000	10	40	40
J00F 2000 16 40 50 K00F 2700 20 50 50 L00F 2100 17 40 60 M00F 1500 12 60 60 N00F 1000 10 40 60 000F 800 8 30 30 E00G 1100 10 20 30 F00G 1000 10 30 60 G00G 900 9 40 40 H00G 1000 10 20 40 H00G 1000 10 30 40 J00G 1000 11 30 30 J00G 1600 13 60 70 L00G 1300 11 40 50 M00G 2200 17 60 50 N00G 1300 11 30 40 O00G - - <td< td=""><td>100F</td><td>1200</td><td>11</td><td>40</td><td>40</td></td<>	100F	1200	11	40	40
K00F 2700 20 50 50 L00F 2100 17 40 60 M00F 1500 12 60 60 N00F 1000 10 40 60 O00F 800 8 30 30 E00G 1100 10 20 30 F00G 10000 10 30 60 G00G 900 9 40 40 H00G 1000 10 20 40 H00G 1000 10 30 30 J00G 1000 10 30 40 K00G 1600 13 60 70 L00G 1300 11 40 50 M00G 2200 17 60 50 N00G 1300 11 30 40 O00G - - 50 40 E00H 1100 10 <t< td=""><td>JOOF</td><td>2000</td><td>16</td><td>40</td><td>50</td></t<>	JOOF	2000	16	40	50
L00F 2100 17 40 60 M00F 1500 12 60 60 N00F 1000 10 40 60 O00F 800 8 30 30 E00G 1100 10 20 30 F00G 1000 10 30 60 G00G 900 9 40 40 H00G 1000 10 20 40 H00G 1000 10 30 30 J00G 1000 10 30 40 K00G 1600 13 60 70 L00G 1300 11 40 50 M00G 2200 17 60 50 N00G 1300 11 30 40 O00G - - 50 40 O00G - - 50 40 E00H 1100 10 30<	KOOF	2700	20	50	50
M00F 1500 12 60 60 N00F 1000 10 40 60 O00F 800 8 30 30 E00G 1100 10 20 30 F00G 1000 10 30 60 G00G 900 9 40 40 H00G 1000 10 20 40 H00G 1000 10 30 40 H00G 1000 10 30 40 H00G 1000 10 30 40 I00G 1300 11 40 50 M00G 2200 17 60 50 M00G 1300 11 30 40 O00G - - - 50 M00G 10 40 40 40 F00H 900 9 30 30 G00H 100 10 30 <td>LOOF</td> <td>2100</td> <td>17</td> <td>40</td> <td>60</td>	LOOF	2100	17	40	60
NOOF 1000 10 40 60 OOOF 800 8 30 30 EOOG 1100 10 20 30 FOOG 1000 10 30 60 GOOG 900 9 40 40 HOOG 1000 10 20 40 HOOG 1000 10 20 40 HOOG 1200 11 30 30 JOOG 1000 10 30 40 KOOG 1600 13 60 70 LOOG 1300 11 40 50 MOOG 2200 17 60 50 NOOG 1300 11 30 40 OOOG - - 50 40 EOOH 1100 10 40 40 FOOH 900 9 30 30 GOOH 10 30 50<	MOOF	1500	12	60	60
OOOF80083030E00G1100102030F00G1000103060G00G90094040H00G1000102040I00G1200113030J00G1000103040K00G1600136070L00G1300114050M00G2200176050N00G1300113040C00G5040E00H1100104040F00H90093030G00H1100103050H00H1200115040I00H100104050	NOOF	1000	10	40	60
E00G1100102030F00G1000103060G00G90094040H00G1000102040I00G1200113030J00G1000103040K00G1600136070L00G1300114050M00G2200176050N00G1300113040O00G5040E00H1100104040F00H90093030G00H1100103050H00H1200115040I00H104050	000F	800	8	30	30
F00G1000103060G00G90094040H00G1000102040I00G1200113030J00G1000103040K00G1600136070L00G1300114050M00G2200176050N00G1300113040O00G5040E00H1100104040F00H90093030G00H1100103050H00H1200115040I00H100104050	E00G	1100	10	20	30
G00G90094040H00G1000102040I00G1200113030J00G1000103040K00G1600136070L00G1300114050M00G2200176050N00G1300113040O00G5040E00H1100104040F00H90093030G00H1100103050H00H1200115040I00H100104050	FOOG	1000	10	30	60
H00G1000102040I00G1200113030J00G1000103040K00G1600136070L00G1300114050M00G2200176050N00G1300113040OO0G5040E00H1100104040F00H90093030G00H1100103050H00H1200115040I00H100104050	G00G	900	9	40	40
IOOG1200113030JOOG1000103040KOOG1600136070LOOG1300114050MOOG2200176050NOOG1300113040OOOG5040EOOH1100104040FOOH90093030GOOH1100103050HOOH1200115040IOOH100104050	HOOG	1000	10	20	40
J00G1000103040K00G1600136070L00G1300114050M00G2200176050N00G1300113040O00G5040E00H1100104040F00H90093030G00H1100103050H00H1200115040I00H1000104050	100G	1200	11	30	30
K00G1600136070L00G1300114050M00G2200176050N00G1300113040O00G5040E00H1100104040F00H90093030G00H1100103050H00H1200115040I00H1000104050	J00G	1000	10	30	40
L00G1300114050M00G2200176050N00G1300113040O00G5040E00H1100104040F00H90093030G00H1100103050H00H1200115040I00H1000104050	KOOG	1600	13	60	70
M00G2200176050N00G1300113040O00G5040E00H1100104040F00H90093030G00H1100103050H00H1200115040I00H1000104050	LOOG	1300	11	40	50
N00G1300113040O00G5040E00H1100104040F00H90093030G00H1100103050H00H1200115040I00H1000104050	MOOG	2200	17	60	50
OOOG5040EOOH1100104040FOOH90093030GOOH1100103050HOOH1200115040IOOH1000104050	NOOG	1300	11	30	40
E00H1100104040F00H90093030G00H1100103050H00H1200115040100H1000104050	000G	-	-	50	40
F00H90093030G00H1100103050H00H1200115040100H1000104050	EOOH	1100	10	40	40
G00H1100103050H00H1200115040I00H1000104050	FOOH	900	9	30	30
HOOH1200115040IOOH1000104050	GOOH	1100	10	30	50
IOOH 1000 10 40 50	ноон	1200	11	50	40
	IOOH	1000	10	40	50

.

JOOH1000105040KOOH1000102050	
KOOH 1000 10 20 50	
LOOH 1100 20 50	
MOOH 1200 11 50 40	
NOOH 1500 12 50 80	
000H - 40	
E00T 1000 10 40 30	
FOOT 1000 10 30 40	
GOOT 800 8 30 30	
HOOT 1000 10 50 40	
1001 100 10 30 60	
1001 1100 10 30 40	
KOOT 900 9 30 40	
1001 1000 10 30 40	
MOOT 900 9 40 40	
NOOT 1100 10 40 40	
0001 1100 10 30 50	
$E_{0,T}$ 1100 10 40 60	
$F_{0}0J$ 1200 11 30 40	
G00,T 1300 11 50 40	
ноод 12000 11 50 50	
тоод 1100 10 50 50	
JOOJ 1000 10 30 30	
коод 1100 10 40 40	
торд 1000 10 40 50	
MOOJ 1200 11 50 40	
N00J 900 9 40 30	
OOOJ 900 9 40 40	
E00K 1000 10 50 50	
FOOK 900 9 40 50	
GOOK 1000 10 50 50	
HOOK 1100 10 50 60	
IOOK 800 8 50 50	
JOOK 900 9 40 40	
KOOK 900 9 40 40	
LOOK 1000 10 30 30	
MOOK 900 9 30 60	
NOOK 800 8 30 40	
OOOK 900 9 40 40	
E00L 800 8 40 60	
FOOL 1000 10 50 50	
GOOL 900 9 40 40	
HOOL 900 9 40 60	
100L 1000 10 50 50	
JOOL 1000 10 50 60	
KOOL 1000 10 50 50	
LOOL 900 9 20 30	

Grid Location	NaI Count Rate (c/min)	Exposure Rate (UR/hr)	Beta-Gamma Count Rate w/window (c/min)	Beta-Gamma Count Rate w/o window (c/min)
MOOL	1100	10	30	40
NOOL	1000	10	50	40
000L	9 00	9	20	40
FOOM	900	7	30	40
GOOM	1100	10	20	30
HOOM	1000	10	30	40
IOOM	1000	10	40	50
JOOM	800	8	30	40
KOOM	1000	10	40	40
LOOM	1100	10	40	30
MOOM	1000	10	30	30
NOOM	1000	10	30	50
000M	1000	10	30	40
FOON	900	9	30	50
GOON	1000	10	30	30
HOON	1100	10	30	30
IOON	900	9	40	30
JOON	900	9	40	50
KOON	800	8	40	60
LOON	900	9	40	30
MOON	1100	10	30	30
G000	1000	10	40	60
H000	1100	10	20	30
1000	1000	10	20	30
J000	1200	11	30	40
K000	1000	10	40	50

ς,

•

Table 2

.

٠.

۰,

- -

í

.

Gamma Radiation Levels and Beta-Gamma Count Rates at Grid Locations in Area 2

Grid Location	NaI Count Rate (c/min)	Exposure Rate (uR/hr)	Beta-Gamma Count Rate w/window (c/min)	Beta-Gamma Count Rate w/o window (c/min)
B00F	600	10	40	40
COOE	600	10	20	20
COOF	600	10	20	30
000	700	11	30	40
DUUB	800	12	-	-
D00C	800	12	-	_
	700	11	20	4.0
DOOD	500	<u> </u>	20	20
DOOL	500	و ۱0	20	20
DOOL	700	10	20	50
	700	12	50	50
	· 700	11	20	50
	700	11	30	50
D000	1100	10	30	40
EUUA	500	9	-	-
EUUB	800	12	=	-
EUUC	800	12	-	-
EUUD	700	11	-	-
EUUE	700	11	30	30
EUOF	500	9	20	20
EOOG	500	9	30	30
EOOH	800	12	30	40
EOOI	700	11	30	30
EOOJ	900	13	30	30
FOOA	800	12	-	-
FOOB	900	13	-	-
FOOC	800	12	40	40
FOOD	900	13	30	30
FOOE	1000	14	30	40
FOOF	500	9	30	30
FOOG	800	12	40	40
FOOH	700	11	50	50
FOOI	800	12	30	40
FOOJ	800	12	30	30
GOOA	800	12	-	-
GOOB	900	13	-	-
GOOC	800	12	30	40
GOOD	900	13	40	40
GOOE	700	11	30	40
GOOF	1000	14	30	40
G00G	1000	14	40	40
GOOH	800	12	30	40
GOOT	800	$\overline{12}$	30	30
GOOJ	800	12	20	40
HOOA	800	12	-	_

4

.

Grid Location	NaI Count Rate (c/min)	Exposure Rate (uR/hr)	Beta-Gamma Count Rate w/window (c/min)	Beta-Gamma Count Rate w/o window (c/min)
H00B	800	12		-
HOOC	800	12	30	30
HOOD	1000	14	30	40
HOOE	900	13	40	4 0
HOOF	800	12	30	30
HOOG	800	12	30	40
ноон	700	11	30	30
HOOI	600	10	30	30
HOOJ	900	13	30	30
HOOK	800	12	40	60
HOOL	800	12	30	50
IOOA	900	13	_	_
100B	1000	14	_	_
TOOC	1000	14	30	30
IOOD	900	13	40	40
IOOE	800	12	40	40
IOOF	800	12	20	40
100G	900	13	30	40
TOOH	800	12	30	30
TOOT	600	10	40	40
1001	900	13	40	40
IOOK	900	13	40	60
IOOL	1100	15	40	80
JOOA	900	13	_	_
J00B	800	12	_	-
J00C	900	13	-	-
JOOD	1000	14	30	50
JOOE	900	13	40	40
JOOF	1200	16	30	40
J00G	1000	14	40	40
J00H	800	12	40	40
J 00I	600	10	40	50
J00J	900	13	30	30
JOOK	900	13	40	40
JOOL	600	10	30	30
K00B	1000	14	-	-
K00C	1100	15	-	-
KOOD	1200	16	40	50
KOOE	1100	15	40	60
KOOF	2000	23	30	40
K00G	1400	18	40	40
KOOH	1000	14	40	40
KOOI	1000	14	40	60
KOOJ	800	12	20	30
KOOK	800	12	30	30
KOOL	800	12	20	40
LOOB	1000	$\bar{1}\bar{4}$		-

•,*

.

.

••

`.•

. -

.

۰,

:

.

.

▲

Grid Location	NaI Count Rate (c/min)	Exposure Rate (uR/hr)	Beta-Gamma Count Rate w/window (c/min)	Beta-Gamma Count Rate w/o window (c/min)
LOOC	1100	15	-	-
LOOD	1800	21	50	50
LOOE	2600	27	40	40
LOOF	2500	27	940	1000
* L00G	>50000	640	2100	2200
LOOH	7000	55	70	120
LOOT	2300	25	140	140
T.00.T	1300	17	40	80
T.00K	2100	24	50	50
LOOL	700	11	40	60
* 1.73E	>50000	400	_	_
MOOB	1100	15	-	_
MOOC	1500	19	-	_
MOOD	1900	22	-	-
MOOE	3700	35	80	80
MOOF	8000	60	80	90
MOOG	3600	35	50	50
моон	5000	44	40	50
MOOT	7000	55	80	90
MOOJ	1800	21	60	70
MOOK	900	13	30	40
MOOT.	900	13	30	60
NOOB	1200	16	_	-
NOOC	1300	17	-	-
NOOD	1600	20	-	-
NOOE	2000	23	-	-
NOOF	3300	32	-	-
NOOG	1000	14	30	40
NOOH	1000	14	40	50
NOOI	47000	210	680	1020
NOOJ	2300	25	30	30
NOOK	1000	14	40	50
NOOL	900	13	30	50
000C	1200	16	-	-
000D	1100	15	-	-
000E	1400	18	-	-
000F	1400	18	50	60
000G	900	13	40	40
000H	1000	14	40	50
0001	900	13	20	40
* 000J	>50000	840	4800	5200
000K	1500	19	50	50
OOOL	600	10	20	20
POOD	1100	15	-	-
POOE	1200	16	-	· –
POOF	1000	14	40	60
POOG	1000	14	30	50

.

i.

Grid Location	NaI Count Rate (c/min)	Exposure Rate (uR/hr)	Beta-Gamma Count Rate w/window (c/min)	Beta-Gamma Count Rate w/o window (c/min)
P00H	1100	14	30	50
POOI	1000	14	50	60
POOJ	1000	14	400	50
POOK	20000	115	240	300
POOT.	3300	32	130	130
DOOM	500	<u> </u>	150	150
DOON	500	9	_	-
ODOR ODOR	1000	1 A	_	-
0005	1000	יי ז א	_	· –
0000	1000	1 /	30	40
0008	1000	⊥ ∞] A	30	~0 A O
	1000	10	20	40 60
0001	800	12	30	80 40
0000	800	12	30	4 U
QUUK	1000	12	30	40
DOOT DOOT	1200	10	&U 7.0	40
QUUM	1300	1/	70	70
N000	000	10	20	40
RUUF	1000	14	-	-
RUUG	900	13	-	_
RUUH	900	13	40	40
RUUI	1000	14	30	30
RUUJ	800	12	40	40
ROOK	900	13	40	40
ROOL	1000	14	60	60
ROOM	700	11	40	40
ROON	700	11	40	50
R000	600	10	20	30
SOOG	800	12	-	-
SOOH	900	13	30	60
S001	900	13	40	50
S00J	1000	14	50	60
SOOK	900	13	40	4 0
SOOL	1200	16	40	4 0
SOOM	6000	48	80	80
SOON	500	9	30	30
S00 0	2300	25	90	90
SOOP	800	12	30	40
TOOG	800	12	~	-
тоон	1100	15	~	-
T00I	1000	14	-	-
TOOJ	900	13	30	50
TOOK	1000	14	30	40
TOOL	1000	14	4 O	40
TOOM	1600	20	60	70
TOON	2500	27	180	200
T000	3100	31	70	70
TOOP	16000	98	600	700

.

• [

-

•

•

1

٠,

•••

:

.

Ĺ

2 10

Grid Location	NaI Count Rate (c/min)	Exposure Rate (uR/hr)	Beta-Gamma Count Rate w/window (c/min)	Beta-Gamma Count Rate w/o window (c/min)
 T00Q	1500	19	30	40
TOOR	500	9	30	40
TOOS	700	11	-	-
U00H	700	11	- -	-
UOOI	900	13	-	-
U00J	800	12	-	-
UOOK	700	11	40	50
UOOL	900	13	50	50
UOOM	1000	14	40	50
UOON	2800	29	100	140
U000	3500	34	20	80
* U00P	>50000	450	1300	1500
UOOQ	35000	170	400	720
UOOR	1500	19	40	40
UOOS	1000	14	-	-
VOOJ	800	12	_	_
VOOK	900	13	40	40
VOOL	1000	14	50	50
VOOM	900	13	40	40
VOON	900	13	4U 500	40
VUUO	13000	85	500	500
VUUP	4/00	42	170	
	12000	80	100	100
VUUR	5000	4/4 1 1	100	100
VUUS	700	10	_	_
WUUK MUUK	800	12	30	30
	800	12	30	30
WOOM	900	13	40	50
	1000	14	50	50
W0000	2100	120	600	800
W001 W000	40000	190	. 900	1100
WOOR	20000	115	140	170
WOOS	1100	15		_
XOOK	900	13	-	-
XOOL	1100	15	-	-
XOOM	1100	15	40	40
XOON	1000	14	40	40
X000	1100	15	30	50
XOOP	4000	37	120	160
X00Q	12000	80	300	400
* X00R	>50000	740	1900	2000
XOOS	1500	19	-	-
YOOI	1000	14	-	-
Y00J	1300	17	-	-
YOOK	1600	20	-	-
Y001.	1600	20	-	-

Table 2, cont.

.

Grid Location	NaI Count Rate (c/min)	Exposure Rate (uR/hr)	Beta-Gamma Count Rate w/window (c/min)	Beta-Gamma Count Rate w/o window (c/min)
YOOM	1100	15	40	40
YOON	3000	30	30	50
Y000	1700	20	40	50
YOOP	2100	24	4 0	60
YOOQ	9000	66	200	280
YOOR	40000	190	1000	1400
YOOS	3600	35	_	-
2001	800	10 °	40	40
200J	1000	14	40	50
ZOOK	1800	21	70	90
ZOOL	3200	32	80	80
ZOOM	3700	35	120	150
ZOON	5000	<u>4</u> <u>4</u>	110	130
Z00 O	3300	32	80	120
ZOOP	1900	22	50	60
Z00Q	2400	26	50	60
ZOOR	12000	80	300	380
ZOOS	2600	27	-	_
a00I	900	13	40	50
a00J	900	13	20	40
a00K	1300	17	50	90
a00L	1800	21	60	80
a00M	1900	22	120	140
a00N	1200	16	90	100
a000	1300	17	40	40
a00P	1000	14	20	30
a000	2200	24	60	60
a00R	2300	25	70	100
a005	2600	27	-	-
b001	900	13	-	-
600J	900	13	_	-
b00 P	800	12	4 0.	50
Ь00 0	700	11	30	70
b00R	2400	26	60	90
b00S	2400	26	-	-
COON	700	11	-	-
c000	700	11	40	40
C00P	1000	14	50	50
c00 Q	1300	17	60	80
COOR	1900	22	50	80
c00S	1800	21	_	_
0006	1400	18	40	60
d00P		-	30	50
0006			30	60
d00 R	2000	23	60	70
d00S	2000	23	-	_
d00T	900	13	_	_

ς.

Table	2.	cont.
TUDIC	~ 7	conc.

..

.

-

•,

÷

.

Grid Location	NaI Count Rate (c/min)	Exposure Rate (uR/hr)	Beta-Gamma Count R ate w/window (c/min)	Beta-Gamma Count Rate w/o window (c/min)
d00U	1800	21	-	
000 V	2200	24	50	50
d00W	2500	27	100	100
X00b	700	11	30	30
e00L	600	10	70	70
e000	1700	14	-	-
e 9 50	1000	14	-	-
e00P	-	-	70	100
e95Q	1000	14	40	40
e95R	1300	17	40	80
e95S	1800	21	-	-
e95T	2500	27	-	-
e95U	3500	34	-	-
e95V	3400	33	100	100
e95W	4000	37	120	140
e95X	3000	30	100	100
e95Y	1500	19	50	60
e952	1700	20	70	80
e00a	2300	25	90	100
fOOK	600	10	60	60
fOOL	700	11	50	80
£000	1100	15	40	60
£57Q	3400	33	-	-
fOOR	2700	28	60	60
foos	2700	28	-	-
foot	4500	41	-	-
£000	6000	50	-	-
IUUV	50000	230	1060	1080
IUUW	6000	50	120	140
IUUX	5000	50	TUO	100
100Y	1500	19	50	60
1002	1000	14	40	4U 50
IUUd foom	1000	14	30 60	50
	700	-	50	50 50
GUUK	700	10	· 50	50
GOOT COM	600	10	60	90
900M ~000	2000	22	80	
9000 a00P	2000	23	50	90
guur	2000	20	70	100
9000 2000	21000	120	300	420
guur anns	21000	120 50	500	
9005 a00m	6000	02 50	-	_
guur	15000	50	-	_
9000 - 007	12000	כ צ דד	-	260
guuv	11000	// E C		1 4 0
guuw guuw	7000	0C 27	710 110	50 50
guux	2500	<u> </u>	50	00

•

Grid Location	NaI Count Rate (c/min)	Exposure Rate (uR/hr)	Beta-Gamma Count Rate w/window (c/min)	Beta-Gamma Count Rate w/o window (c/min)
a00Y	2200	24	90	120
g00Z	1500	19	50	70
g00a	1000	14	30	30
hOOK	700	11	30	30
h001.	800	12	70	70
b00M	900	13	70	80
hOON	1000	14	-	_
h000	3100	31	70	70
h000	17000	105	180	280
* h000	>50000	1050	4200	4200
1000 1000	27000	140	560	660
hook	27000 A5000	205	900	1080
1005 600m	4000	205	150	150
5001	4000 6500	52	170	190
h000	10000	72	240	250
 	3800	36	200	300
hoow	1000	1 /	200 60	80
hoox	1900	21	50	50
h001 b007	700	21	20	30
h002	700	11	20	40
1100a h72D	/00	11	8000	9400
11/2P	800	12	40	50
1001	800	12	30 60	50
1001	1700	10	80	110
TOOM	2000	20 60	30	110
1000	36000	175	1000	1100
+ +00D	50000	1600	7200	8400
* 100P	>50000	1170	2800	3600
~ 100Q	20000	155	2000	1120
1008	30000	122	1900	300
1005	1600	00		40
1001	2000	20	120	180
1000	2000	30	130	180
100 V	2200	24	40	60
100%	1400	10	4 O	60
100X	1000	14 1	40 70	70
100Y	1200	19	70 60	70 60
JUUK	800	12	60	80
]UUL	900	10	80	80
JUUM	2000	23	90	160
JUUN	10000	49	130	100
<u>j000</u>	10000	70	130	420
JUUP	20000	CTT CTT	4UU 410	% ∠ U 5 ∩ ∩
JUUQ	10000	98	#T0	500
JOOR	21000	120	560	/00
juus	1900	22	/0	3U 60
JUUT	1200	10	50	
j00U	1000	1∙4	60	υø

-

-

:

,

4

.

:-

۰.

ŀ

Grid Location	NaI Count Rate (c/min)	Exposure Rate (uR/hr)	Beta-Gamma Count Rate w/window (c/min)	Beta-Gamma Count Rate w/o window (c/min)
 i00V	1800	21	70	70
iÓÓW	1200	16	70	80
i00x	1000	14	50	50
iOOY	1100	15	60	60
KOOL	1000	14	70	70
KOOM	1100	15	90	110
k O O N	1000	14	60	90
k000	1000	14	70	90
k00P	1100	15	80	110
k00Q	1400	18	40	40
kOOR	7500	58	140	180
k00S	1100	15	50	50
kOOT	1100	15	30	50
k00U	1700	20	60	60
k00V	1700	20	50	60
k00W	700	11	40	40
k00X	700	11	40	50
k00Y	1000	14	40	50
100L	900	13	70	70
100M	900	13	70	80
100N	800	12	70	70
1000	900	13	80	90
100P	700	11	60	70
100Q	900	13	50	50
100R	800	12	40	40
100S	1200	16	40	50
100T	1200	16	60	70
100U	1100	15	60	80
100V	900	13	30	40
m000	800	12	80	80
m00P	700	11	60	60
mOOQ	700	11	40	40
mOOR	900	13	30	50
m00S	1000	14	40	40

* Reading >50,000 on NaI, reading was made with end window GM tube with beta shield.

Surface Soil Sample Radionuclide Concentrations (pCi/g), by Gamma Analysis

. .

٠,

: .

2 1

Location	Sample	K-40	U-238	Ra-226	Pb-214	Bi-214	Ra-223	Rn-219	Pb-211	Pb-212
GOOC	Area 2, Berm	2.4E1		2.1E0	2.1E0	2.1E0				
i00Q	Area 2, Near Shuman Bld		3.0E2	8.6E2	9.6E2	7.6E2	1.6E2	3.1E2	3.6E2	
ZOON	Area 2, Road Surface		4.4El	6.0E2	6.6E2	5.4E2	2.0E1	2.0E1		
000J	Area 2, Near Berm		5.7E2	2.3E3	2.5E3	2.0E3	6.0E2	7.8E2	9.6E2	
000G	Area 2, Near Berm	2.1E1		1.0E1	1.1E1	9.6E0				
NOOI	Area 2, Near Berm		5.5E2	2.0E3	2.0E3	2.1E3	4.9E2	7.9E2	8.9E2	
MOOE	Area 2, Berm	1.3E1		3.9E1	4.2El	3.6E0				
FOOC	Area 2, Berm	l.4El		1.7E0	1.9E0	1.5E0				
SOOK	Area 2, Near Gravel Pile	3.2El		3.9E0	3.9E0					
i00P	Area 2, Near Shuman Bldg		8.3E2	4.0E3	4.4E3	3.6E3	9.6E2	9.6E2	1.5E3	
SOOL	Area 2, Near Gravel Pile	2.8E1		2.5E0	2.4E0	2.6E0				
h00Q	Area 2, Near Shuman Bldg		1.5E2	3.0E1	3.4E2	2.6E2	1.7E2	1.9E2	1.5E2	
SPEC	Off-site Bkg Earth City	2.6E1		2.5E0	2.5E0	2.5E0				
i00P	Area 2, Duplicate		б.4Е2	2.7E3	3.0E3	2.4E3	2.3E3	1.2E3	1.1E3	
SPEC	Off-site Bkg Earth City	1.9E1		2.7E0	2.5E0	2.9E0				
Z00 O	Area 2, Road Surface		2.8E1	5.2E1	5.7El	4.8E1	3.1E1	3.1E1	3.4El	
SPEC	Leachate Treatment Sludge			6.9E0	7.9E0	5.9E0				***
NOOI	Area 2, Near Berm		7.6E2	7 <i>.</i> 1E3	1.0E4	4.2E3	2.2E3	2.0E3	1 <i>.</i> 8E3	
SPEC	Area l, Base 6 Near Road		6.5E2	2.4E3	2.7E3	2.1E3	1.6E3	1.4E3	1.0E3	
P001	Area 2, Near Berm	1.7El	1.0E0	7.0E0	7.3E0	6.8E0				~~~~
SPEC	Area l, Base 7 Near Road		3.7El	2.7E2	3.4E2	2.1E2	2.9E1		5.8El	2.2E0
SPEC	Leachate Treatment Sludge			2.3E0		2.3E0				
SPEC	Area l, Base 6 Near Road		6.5E2	2.7E3	3.1E3	2.5E3	1.2E3	1.1E3	9.5E2	
SPEC	Area l, Base 5 Brown Soil		3.9E2	1.1E3	1.6E3	8.2E2	2.8E2	3.8E2	3.7E2	
SPEC	Area l, Base 5 Black Soil		3.1E2	6.8E2	7.8E2	5.8E2	3.1E2	3.2E2	3.2E2	~
SPEC	Off-site Bkg Taussig Road	3.2El		2.5E0	2.4EO	2.6E0				2.4E0
SPEC	Area l, Base 5 White Soil		2.1E3	2.1E4	2.3E4	1.9E4	5.3E3	5.3E3	5.0E3	
i00P	Area 2, Duplicate		6.2E2	3.5E3	3.753	3.2E3	1.3E3	1.3E3	1 <i>.</i> 7E3	
J00G	Area l, Hot Spot		3.4El	9.7El	1.1E2	8.3E1	4.3El	4.3E1	4.6El	
MOOH	Area l, Low Level Area	2.2E1		2.7E0	2.6E0	2.8E0				3.0E0
KOOF	Area l	2.0E1		3.7E0	3.6E0	3.8E0				2.1E0 ·
SPEC	Area l, East Berm	2.4El		2.6E0	2.2E0	2.9E0				

Table 3

л Л

Table 3 cont.

Location	Sample	K-40	U-238	Ra-226	Pb-214	Bi-214	Ra-223	Rn-219	Pb-211	Pb-212
 IOOL	Area l			2.9E0	3.2E0	2.6E0				2.3E0
SPEC	Area 1, East Berm	1.8El		2.4E0	2.2E0	2.6E0				
P00H	Area 1, Near Road	3.0E1		4.3E0	5.2E0	3.3E0				1.8E0
N6 2 H	Area l	2.5El		4.1E0	3.4E0	4.7E0				3.0E0
011J	Area l, Near Berm		9.4E2	4.2E3	4.6E3	3.9E3	2.0E3	2.1E3	2.1E3	
L73E	Area 2, Side of Hill		3.8E2	1.1E3	1.2E3	1.0E3	4.5E2	4.6E2	3.8E2	
KOOF	Area l	3.9El		4.4E0	5.2E0	3.5E0				
N6 2 H	Area l, Fill	2.7El		3.1EO	3.1E0	3.1E0				1.3E0
NOOF	Area l, Fill			2.6E0	3.0E0	2.1E0				2.6E0
J00G	Area 1, Fill			2.3E0	3.5E0	1.1E0				1.5E0
K66E	Area 1, Near Parking Lot			1.5El	1.7E1	1.3E1				
1001	Area l, Fill	3.1E1		3.8E0		3.8E0				1.6E0

·. •

.

,

Soil Radiochemical Analysis

Table 4

Bi-214 from Gamma Spectroscopy

		Activity pCi/gm	
Sample	U-238	Th-230	Bi-214
	(All +/- 25%)	(All +/- 25%)	(All +/- 25%)
Area l Surface (1980)	3.8	82	2.1
Area l Surface (1980)	12	597	25
Area l Borehole l (1980)	21	188	<i>&</i> 4
Area 2 Surface (1980)	175	6,095	1,488
Area 2 Surface (1980)	18	338	9.4
Base 5 Surface (1981)	101	178,000	19,000
Base 6 Surface (1981)	54	46,100	2,600
Borehole ll (1981)	82	29,200	1,800
NllJ Surface (1981)	127	27,200	2,000
OllJ Surface (1981)	1.0	52,000	3,900

.^..

Auger Hole NaI Counts and IG Analysis

·.•

;

,

.

• -

. •

Table 5

Borehole #	1			Radionucl					
Depth	Gross Nal	Ra-226	Pb-214	Bi-214	U-238	Ra-223	K-40	Pb-211	Pb-212
00	>50,000	1.6El	1.6E2	1.7E2	1.6E2				
01	>50,000	7.5E2	6.5E2	9E2	1.7E2			1.4E2	
02	>50,000	2.2E4	2.4E4	1.9E4				4.2E3	
03	>50,000	4.0E3	3.0E3	4.8E3		1.1E3		2.1E2	
04	>50,000	1.3E3	1.2E3	1.4E3	9.3E1				
05	20,000	2.4E1		2.4E1			8.0E0		
06	4,500	3.9E0	3.5EO	4.3E0			1.1E1		
08	2,200	2.3E0	2.3E0	2.2E0			1.4E1		7.2E-1
10	2,000	2.3E0	2.4E0	2.2E0			1.3E1		8.3E-1
12	1,500	1.9E0	2.2E0	1.6E0			1.3E1		
14	1,300	1.8E0	1.9E0	1.7E0			9.7E0		6.3E-1
16	800	1.3E0	1.2E0	1.3E0			1.0E1		3.9E-1
18	800	1.2E0	1.6E0	8.0E-1			3.3E0		3.0E-1
20	800	8.1E-1	7.4E-2	8.7E-1			1.0E1		3.2E-1
22	500	6.5E-1	4.0E-1	9.0E-1			2.5E0		
24	150	2.5E-1	2.8E-1	2.1E-1			1.5E0		
26	1,000	6.3E-1	7.2E-1	5.4E-1			6.3E0		3.1E-1
28	1,300	8.7E-1	8.4E-1	8.9E-1			1.2E1		5.7E-1
30	500	4.3E-1		4.3E-1			3.0E0		2.1E-1
32	700	1.3E0	1.EO	1.2E0			6.1EO		4.2E-1
34	1,400	2.4E0	2.5E0	2.2E0			6.1E0		5.4E-1
36	1,800	1.4E0	1.5E0	1.2E0			1.2E1		
Borehole #	3			Radionucl	ide Conce	ntrations	[pCi/q]		
Depth	Gross NaI	Ra-226	Pb-214	Bi-214	U-238	Ra-223	K-40	Pb-211	Pb-212
00	>50,000	8.4E2	 7.8E2	8.4E2				6.4El	
01	>50,000	1.5E4	1.3E4	1.9E4	1.4E3				
02	>50,000	7.0E3	5.3E3	8.7E3					
03	1.400	2.3E1	1.4E1	3.2E1			1.2E1		
05	2,300	6.2E0	5.8E0	6,6E0			8.9E0		
07	3,000	4.7E0	4.9E0	4.4E0			6.9E0		
09	1,800	3.5E0	4.2E0	2.8E0		3.6E0	8.2E0		
11	1,000	1.8E0	2.1E0	1.5E0			4.1E0		
13	600	1.7E0	1.4E0	2.0E0					
15	1,800	4.5E0	4.6E0	4.4E0		4.7E0	4.2EO		

Table	5,	cont.
-------	----	-------

Borehole #	3, cont.			Radionuc:	lide Conce	entrations	s [pCi/g]		
Depth	Gross NaI	Ra-226	Pb-214	Bi-214	U-238	Ra-223	K-40	Pb-211	Pb-212
17	1,000	9.0E-1	1.1E0	7.3E-1			6.4E0		4.4E-1
19	500	2.9E-1	3.E-1	2.1E-1			2.2E0		
21	500	5.0E-1	7.E-1	2.2E-1			2.0E0		
23	700	1.0E0	1.1E0	8.7E-1			6.3E0		5.3E-1
25	600	3.3E-1	3.7E-1	2.9E-1					
27	900	9.7E-1	1.1E0	8.4E-1			6.5E0		5.4E-1
29	1,000	5.4E-1	4.8E-1	6.0E-1			7.6E0		
Borehole #	4			Radionucl	ide Conce	ntrations	[pCi/g]		
Depth	Gross NaI	U-238	Pb-214	Bi-214	Ra-226	Ra-223	K-40	Pb-211	Pb-212
00	>50,000		1.5E2	1.7E2	1.3E2	9.5E1		 9.9El	
01	>50,000	5 <i>°</i> 3E5	2.1E3	1.7E3	2.5E3	9.8E2		1.2E3	
02	>50,000		1.2E2	9.El	1.5E2		3.6E0		
03	14,000		2.8E0	2.1E0	3.5E0		3.8E0		
04	2,900		1.6E0	1.6E0	1.6E0		3.6E0		
06	1,100		1.4E0	1.5E0	1.2E0	8.6E-1	4.lE0		
08	1,200		1.7E0	1.9E0	1.5E0	9.0E-1	7.1E0		
10	1,500		2.7E	2.8E0	2.5E0	8.3E-1	9.3E0	3.8E0	
12	2,600								
14	1,500		1.7E0	1.6E0	1.7E0	7.0E-1	7.0E0		
16	1,400		1.0E0	1.2E0	8.4E-1				
18	1,100		8.0E-1	8.El-1	8.0E-1		8.5E0		3.8E-1
20	800		7.6E-1	8.6E-1	6.6E-1				
22	1,100		1.1E0	.1EO	1.1E0		7.7E0		4.1E1
24	1,200		7.5E-1	8.1E-1	7.0E-1		1.6E-1		3.5E-1
26	1,000		4.8E-1	4.2E-1	5.4E-1		6.6E0		3.0E-1
28	700		7.1E-1	7.2E-1	7.0E-1				
30	1,300		8.7E-1	9.9E-1	7.5E-1		1.4E1		6.4E-1
32	1,500		9.5E-1	9.5E-1	9.5E-1		1.5E1		
34	1,700		1.9E0	2.2E0	1.6E0		1.3E1		5.5E-1
Borehole #	5			Radionuc	lide Conc	entration	s [pCi/g]		
Depth	Gross NaI	Ra-226	Pb-214	Bi-214	U-238	Ra-223	K-40	Pb-211	Pb-212
00	1,800	1.8E0		1.7E0		*****	6.3E0		
02	1,500	2.5E0	2.9E0	2.0E0		3.4E0	4 °0 E0		
04	2,700	3.4E0	3.7E0	3.1EO			4.4E0		
06	1,600	1.7E0	1.5E0	1.9E0			1.1E1	~	9.2E-1

. .

Borehole #	5, cont.			Radionuc	lide Conc	entration	s [pCi/q]		
Depth	Gross Nal	Ra-226	Pb-214	Bi-214	U-238	Ra-223	K-40	Pb-211	Pb-212
08	1,000	1.3E0	1.6E0	1.0E0			1.0E1		
10	3,000	4.3E0	4.3E0	4.3E0			4.7E0		2.0E0
12	1,700	2.1E0	1.9E0	2.3E0			2.9E0	2.2E0	
14	1,000	1.8E0	1.3E0	2.3E0			3.0E0		
16	700	8.3E-1	6.0E-1	1.1E0			2.1E0		
18	500	8.9E-1	6.8E-1	1.1E0			2.1E0		
Borehole #	6			Radionucl	ide Conce	ntrations	[pCi/q]		
Depth	Gross NaI	U-238	Pb-214	Bi-214	Ra-226	Ra-223	K-40	Pb-211	Pb-212
00	2,000		7.3E0	8.3E0	6.4E0	7.4E0	9.4E0	1.2El	
02	2,000								
04	3,200	2.2E1	2.5E0	3.0E1	.0E1	2.0E1		1.9E1	
06	3,500		2.1E0	2.2E1	2.1E1	1.9E1		1.6E1	
07	6,000	1.6E1	1.5E1	1.7El	1.3E1	8.1E0			
08	26,000	3.9E1	2.1E1	2.2E1	2.1E1	1.8E1		1.5El	
09	>50,000		4.0E1	4.lEl	4.0E1	3.6E1			
10	43,000		5.8El	5.3El	6.3E1	4.1E1		4.01E	
11	>50,000		3.6E2	2.8E2	2.3E2	2.0E2		1.7E2	
12	16,000	4.4E1	9.9El	9.1El	1.1E2	3.9El		5.6El	
13	2,600		6.4E0	7.2E0	5.5E0	4.4E0	8.5E0		
15	1,100					~ -			
Borehole 🕯	8			Radionucl	ide Conce	ntrations	[pCi/g]		
Depth	Gross NaI	U-238	Pb-214	Bi-214	Ra-226	Ra-223	K-40	Pb-211	Pb-212
00	2,000		3.7E0	4.0E0	3.4E0	1.5E0	5.2E0		4.9E-1
02	1,500		1.4E0	1.5EO	1.3E0		6.5E0		
04	1,100		1.1E0	1.2E0	9.2E-1		4.7EO		
06	1,400		1.1E0	1.1E0	1.1E0		l .lEl		8.3E-1
08	1,400		1.1E0	1.1EO	1.1E0		1.1E1		8.E-1
10	1,500		1.2E0	1.2E0	1.1EO		1.1E1		
12	1,400		1,2E0	1.1E0	1.3E0		1.3E1		7.E-1
14	1,600		1.1E0	1.1E0	1.1EO	•• •• •• •• ••	1.5E1		
16	1,000		1.1EO	1.3E0	8.2E-1		1.1E1		
18	1,400		1.2E0	1.4E	1.1E0		1.4El		4 .7E−1
20	1,700		1.8E0	2.0E0	1.6E0	1.1E0			8.4E-1

•.

. -

•

.

51

Borehole #	9			Radionucl	ide Concer	ntrations	[pCi/q]		
Depth	Gross Nal	U-238	Pb-214	Bi-214	Ra-226	Ra-223	K-40	Pb-211	Pb-212
00	1,400		2.2E0	2.3E0	2.0E0				3.2E-1
02	22,000	4.6El	5.6El	5.6El	5.5El	3.5E1	l.1E1	3.1E1	
03	11,000		5.4E0	4.2EO	6.5E0		1.2E1		
04	2,000		1.3E0	1.3E0	1.4E0		9.3E0	** * ***	
06	600		7.0E-1	8.4E-1	5.6E-1		3.8E0		
08	1,000		9.8E-1	7.8E-1	1.2E0		6.1E0		
10	900		8.0E-1	9.5E-1	6.5E-1		5.E0	1 .6E0	
12	l ₀ 000		1.1E0	1.3E0	1.0E0		8.1E0		3.4E-1
14	700	2.7E0	7.7El	8.3E-1	7.0E-1		4.9E0		5.0E-1
16	1,100		1.0E0	1.0E0	1.0E0				4.7E-1
18	1,300								
20	1,000	7.6E-1	1.1E0	1.2E0	9.8E-1		8.7E0		
22	1,200		1.3E0	1.3E0	1.2E		9.5E0		5.3E-1
Borehole 🕯	10			Radionucl	ide Concer	ntrations	[pCi/g]		
Depth	Gross NaI	U-238	Pb-214	Bi-214	Ra-226	Ra-223	K-40	Pb-211	Pb-212
00	7,000		3.5E0	3.3E0	3.7E0	9.4E-1	3.6E0		
01	35,000		1.4E1	9.2E0	1.8E1	4.4E0	3.6E0		
02	>50,000		4.2E2	3.7E2	4.8E2				
03	>50,000		4.8E2	4.4E2	5.2E2				
04	35,000		2.5E1	1.8E1	3.El				
05	13,000		9.4E0	8.3E0	1.El				
06	4,500		1.2E1	1.4E1	1.0E1	3。9E0		5.0E0	3.1E-1
08	2,000		1.3E1	1.1E1	1.5E1				2.4E-1
10	1,800	7.3E1	1 .2E2	1.3E2	1 .0E2	7.0E1		4.5El	
12	2,000	1.2E1	1.6E1	1.8E1	1.3E1	1.1E1	4.2EO	1.1E1	
14	500	4.9E0	5.1E0	6.1E0	4.0E0	2.7E0	3.0E0		
Borehole {	11			Radionuc	lide Conce	entrations	[pCi/q]		
Depth	Gross NaI	Ra-226	Pb-214	Bi-214	U-238	Ra-223	K-40	Pb-211	Pb-212
00	>50,000	 8.4El	6.6El	1.0E2		2.2E1	5.6E0		
01	>50,000	3.6E3	2.9E3	4.4E3	7.7E2				
02	>50,000	1.3E4		1.3E4	2.9E3				
03	>50,000	1.7E3	1.1E3	.2E3					
04	30,000	7.0E0	5.3E0	8.6E0					
05	22,000	4.9E0	4.6E0	5.2E0		3.6E0	1.3E1	7.1E0	7.4E0

.

62

.....

Borehole #	11, cont.			Radionucl:					
Depth	Gross NaI	Ra-226	Pb-214	Bi-214	U-238	Ra-223	K-40	Pb-211	Pb-212
06	20,000	7.1E0	7.4E0	6.7E0		4.6E0	1.5E1		
07	20,000	8.3E0	8.8E0	7.8E0			1.1E1		
08	20,000	1.3E1	1.5E1	1.2E1		2.0E1	1.0E1	5.8E0	
09	20,000								
Borehole #	16			Radionucl	ide Conce	ntrations	[pCi/q]		
Depth	Gross NaI	U-238	Pb-214	Bi-214	Ra-226	Ra-223	K-40	Pb-211	Pb-212
02	6,000	1.3E1	1.4El	1.6E1	1.1E1	4.3E0	6.2E0	6.1E0	
03	9,000		1.8E1	2.2E1	1.5E1	6.9E0	7.9E0	8.8E0	
04	33,000	2.8E1	5.0E1	5.9El	4.2El	2.0E1	5.0E0	1.6E1	
05	48,000	6.5E1	1.1E2	1.3E2	9.8E1	5.6E1	1.0E1	3.7E1	
06	35,000		1.2E2	1.4E2	1.0E2	7.8E1	6.7E0	4.3El	
07	9,000		4.8E1	5.5El	3.1E1	3.1E1		2.0E1	8.2E-1
08	6,000	1.2E1	1.4E1	1.5E1	1.2E1	4.8E0	3.7E0		
09	15,000		1.5El	1.7E1	1.3E1	7.0E0	4.1E0	5.5E0	
10	35,000		5.8E1	6.6El	5.0E1	7.5El	2.3E0	2.5E1	
11	>50,000	1.7E2	3.8E2	4.5E2	3.1E2	1.7E2		1.4E2	8.5E-1
12	>50,000	1.9E2	5.1E2	6.0E2	4.8E2	3.0E2		1.4E2	2.8E0
13	>50,000	1.2E2	2.4E2	2.4E2	2.4E2	7.2E1		2.6E1	
14	>50,000	3.3E2	5.4E2	4.7E2	6.0E	2.4E2		4.0E2	
15	>50,000		9.2E3	6.9E3	1.1E4				
16	>50,000		7.7E3	6.1E3	9.2E3				
17	37,000		8.2E1	8.1E1	8.3E1	1.6E1	5.7E0	2.6E1	
18	8,000		2.9E1	3.0E1	2.7E1	6.1E0		1.5El	
19	6,000	1.3E1	3.4El	4.2El	2.6E1	1.5E2		1.9E1	
Borehole #	17			Radionucli	ide Conce	ntrations	[pCi/g]		
Depth	Gross NaI	U-238	Pb-214	Bi-214	Ra-226	Ra-223	K-40	Pb-211	Pb-212
00	700		1.2E0	1.1E0	1.2E0		4.4E0		
02	600		5.4E-1	5.3E-1	5.4E-1		2.3E0		1.3E-1
· 04	300		3.3E-1	3.7E-1	2.9E-1		1.8E0		1.8E-1
06	250		2.6E-1	2.4E-1	2.7E-1		1.9E0		
08	300		2.4E-1	2.9E-1	1.9E-1				
10	300		2.9E-1	3.6E-1	2.2E-1		2.0E0		
12	400		2.7E-1		2.7E-1		3.0E0		2.1E-1
14	700		5.9E-1	5.3E-1	6.5E-1		4.7EO		6.5E-1

• •

Ż

٠.

. .

Borehole #	17, cont.			Radionuclide Concentrations [pCi/g]					
Depth	Gross NaI	U-238	Pb-214	Bi-214	Ra-226	Ra-223	K-40	Pb-211	Pb-212
16	1,500		1.2E0		1.2E0		1.E1		
18	800		1.5E0	1.5E0	1.4E0		5.3E0		
20	3,000		8.5E0	9.0E0	8.0E0	2.9E0	6.5E0		
22	1,000		1.6E0	1.7E0	1.5E0		4.3E0		
Borehole #	18			Radionucl	ide Conce	ntrations	[pCi/q]		
Depth	Gross NaI	U-238	Pb-214	Bi-214	Ra-226	Ra-223	K-40	Pb-211	Pb-212
	1.000								
02	1,500		1.3E0	1.3E0	1.2E0	7.2E-1	7.8E0		
04	1,100		9.3E-1	1.0E0	8.3E-1	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
06	1,000		9,9E-1	1.1E0	8.8E-1		6.90E		
08	600		4.1E-1	3.3E-1	4.8E-1		2.5E0		
10	600		5.7E-1	6.5E-1	4.9E-1		2,5E0		
12	1,100		7.7E-1	9.4E-1	6.1E-1				
14	1,000		6.7E-1	7.2E-1	6.1E-1				
16	1,000		7.6E-1	1.0E0	5.0E-1				4.8E-1
18	1,200								
Borehole #	19			Radionucl	ide Conce	ntrations	[pCi/a]		
Depth	Gross NaI	U-238	Pb-214	Bi-214	Ra-226	Ra-223	K-40	Pb-211	Pb-212
00	1,000		1.3E0	1_4E0	1.3E0		1.6E0		
02	1,700		3.9E0	4.3E0	3.4E0	2.1E0	4.4E0		4.lE-1
04	2,100		3.9E0	4.2E0	3.5E0		1.4E1		8.1E-1
06	4,400		6.0E0	6.3E0	5.8E0	2.3E0	1.0E1		8.6E-1
07	28,000	3.3E1	3.7El	3.5El	3.9El	2.2E1	1.3E1	2.5E1	
08	>50,000	4.2El	3.4E2	3.4E2	3.4E2	2.3E2	7.5E0	2.3E2	
09	17,000	2.7El	1.9E1	l .7El	2.2E1	5.3E0		1.3E1	
10	4,600		4.2E0	3.9E0	4.4E0		6.1E0		
12	1 ₀ 000		6.5E-1	6.0E-1	7.0E-1		4.9E0		
14	600		8.6E-1	1.1E0	6.4E-1				2.lE-1
16	500		6.4E-1	7.lE-1	5.7E-1		2.4E0		

64

. .
Borehole #	20		Radionuclide Concentrations [pCi/g]							
Depth	Gross NaI	U-238	Pb-214	Bi-214	Ra-226	Ra-223	K-40	Pb-211	Pb-212	
00	10,000		8.9E0	3.8E0	1.4El	6.9E0	6.8E0			
01	23,000		7.2E1	6.8El	7.6E1	4.3E1	1.0E1	3.9E1		
02	9,000		1.4E1	9.9E0	1.7E1	2.9E0	8.2E0	1.7E1		
03	2,200		2.7E0		2.7E0		6.0E0			
05	900		1.3E0	1.4E0	1.1E0					
07	700		1.2E0	1.2E0	1.1E0		9.9E0			
09	1,000		1.5E0	2.0E0	1.0E0		1 <i>.</i> 5El			
11	1,600		1.9E0	1.9E0	1.8E0		2.7El		1.3E0	
13	1,200		1.2E0	1.3E0					1.2E0	
15	1,100		1.2E0	1.3E0	1.1E0		1.8E0		6.6E-1	
17	500		7.0E-1	7.7E-1	6.4E-1				3.6E-1	
Borehole #	21			Radionucl	ide Conce	ntrations	[pCi/q]			
Depth	Gross NaI	U-238	Pb-214	Bi-214	Ra-226	Ra-223	K-40	Pb-211	Pb-212	
00	14,000	2.1El	3.4El	4.2El	2.7El					
01	13.000		1.3E1	1.3E1	1.2E1	3.2E0	1.8E0			
02	1.300		1,2E0	9.5E-1	1.4E0		2.1E0			
03	1,300		1.3E0	1.3E0	1.3E0					
04	7,000		5.4E0	5.2E0	5.6E0					
05	46,000	1.8E1	6.2E1	6.0E1	6.4El	3.2E1	9.2E0	2.1E1		
06	>50,000	1.7E1	6.6E2	5.4E2	7.8E2			3.3E2	'_	
07	>50,000	4.5E2	3.2E3	2.8E3	3.7E3	8.3E2		1.5E3		
08	>50,000	3.2El	7.3El	6.7El	7.9El	2.9E1		3.2E1		
09	32,000		3.6E1	3.6E1	3.5E1	9.3E0	8.2E0	1.2E1		
10	9,000		2.2El	2.8E1	2.0E1	1.9E0	5.6E0			
11	4,300		1.5El	1.7E1	1.2E1		3.3E0			
12	6,000		5.8E0	6.2E0	5.4E0		5.9E0			
13	7,000		8.1E0	8.8E0	7.3E0	3.8E0	1.1E1		8.5E-1	
14	7,000		1.3E1	1.5E1	1.1E1	6.1E0	1.1E1			
15	10,000	5.6E0	1.1E1	1.3E1	9.4E0	5.3E0	9.4E0	5.1E0	6.7E-1	
16	8,000		6.5E0	7.2E0	5.7E0	3.2E0	4.4E0			
17	,000		6.1E0	7.1E0	5.2E0	3.7E0	3.1E0			
18	3,500	5.6E0	5.7E6	6.4E0	4.4E9	2.7E0	3.0E0			
20	3,000		6.9E0	8.3E0	5.5E0	4.4E0				

· •

٠.

.

Borehole #	22			Radionuclide Concentrations [pCi/g]					
Depth	Gross Nal	U-238	Pb-214	Bi-214	Ra-226	Ra-223	K-40	Pb-211	Pb-212
	10,000		2.&El	 2 7El	 2 1 Fl	 1 6El	 2 7F0		
01	13,000	2.0E1	3.2E1	3.8E1	2.5El	1.5E1	5.9E0	1.7E1	5.68-1
02	11,000	1,9E1	2.8E1	3.2E1	2.5E1	1.6E1	4.1E0	1 5EI	
03	4,300		5,6E0	6.3E0	4,9E0	2,2E0	4.1E0		6.7E-1
04	5,500		1.1E1	1.2E1	8.8E0	5,9E0	6,5E0		
06	4,500		8.1E0	9.4E0	6.7E0	5.4E0	3.8E0	5.7E0	3.6E-1
07	5,000	9.4E0	8.9E0	1.0E1	7.3E0	5.4E0	6.3E0		7.0E-1
08	5,000	1.0E1	1.0E1	1.3E1	8.4E0	7.1E0	3.7E0	6.6E0	
10	4,300		1.5E1	1.8E1	1.2E1	7.3E0	2.8E0	5.E0	
12	7,000		1.4El	1.7E1	1.1E1		4.1E0		
13	4,000	1.5E1	1.4E1	1.6E1	1.1E1	6.9E0	2.9E0	6.1E0	
14	7,000	9.1E0	1.3E1	1.6E1	l .lEl	4.7E0	4.8E0		
15	9,000		2.3E1	2.9E1	l .7El	1.3E1	3.7E0	1.0E1	و میں جو مندر ہوں جس
16	8,000		2.3E1	2.8E1	1.9E1	1.6E1	2.0E0	1.1E1	
17	3,500	7.3E0	7.4E0	8.3E0	6.4E0	5.0E0	2.3E0		
18	7,000	l .8E1	1.8E1	2.0E1	1.5E1	6.1E0			
19	9,000		1.7E1	2.0E1	1.4E1	1.2E1	3.8E0		
20	13,000		3.5El	4.0E1	3.0E1	2.5El	3.7E0	1.5E1	
21	10,000		1.1E1	l .1E1	l .lEl	3.5E0	3.6E0		
22	24,000		1.9E1	1.6El	2.1E1	4.1EO	4.3E0	6.3E0	
23	>50,000		5.8E3	5.8E3	5.8E3	3.0E2		2.6E2	
24	>50,000		7.0E2	6.4E2	7.5E2	2.9E2		3.3E2	
25	>50,000		6.4E2	6.4E2	6.4E2	3.6E2		3.4E2	
Borehole 🖇	31			Radionucl	ide Conce	ntrations	[pCi/q]		
Depth	Gross Nal	U-238	Pb-214	Bi-214	Ra-226	Ra-223	K-40	Pb-211	Pb-212
00	1,200		6.5E-1	5.6E-1	7.4E-1		7.8E0		5.6E-1
02	900		5.6E-1	5.9E-1	5.3E-1				& .5E−1
0 &	1,500		9.1E-1	9.3E-1	8.9E-1		6.5E0	1.7E0	
06	1,000		6.3E-1	6.4E-1	6.3E-1		6.1EO		
08	800		5.lE-1	4.5E-1	5.7E-1				
10	800		4 .9E−1	5.2E-1	4.5E-1				3.8E-1
12	1,500		3.7E-1	3.7E−1			3.7E0		
14	1,100		7.lE-1		7.1E-1		1.3E1		
16	1,000		5.lE-1		5.1E-1		4.0E0		3.1E-1
18	1,500	8.5E-1	8.1E-1	8.6E-1	7.7E-1		8.1E0		8.0E-1

66

-***** 0

٦

...

• •

Borehole #	31, cont.			Radionucl:	ide Conce	ntrations	[pCi/g]		
Depth	Gross NaI	U-238	Pb-214	Bi-214	Ra-226	Ra-223	K-40	Pb-211	Pb-212
20	600		4.9E-1	4.8E-1	5.0E-1				6.2E-1
22	1,300		7.lE-1	8.4E-1	5 .9E-1				
24	1,300		1.1E0	1.1E-1	1.0E0		6.2E0		
Borehole #	32			Radionucl	ide Conce	ntrations	[pCi/q]		
Depth	Gross NaI	U-238	Pb-214	Bi-214	Ra-226	Ra-223	K-40	Pb-211	Pb-212
00	16,000		8.3E0	6.5E0	1.0El	2.0E0	2.2E0		
01	>50,000		1.5E2	1.4E2	1.6E2	1.1E2		6.9El	
02	17,000		4.9E1	4.lE1	5.7E1	2.0E1	3.9E0	1.9E1	
03	5,000		3.1E0	2.1E0	4.2E0				
04	1,300		3.1E0	2.1E0	4.2E0				
06	1,700		1.7E0	1.9E0	1.4E0				3.1E-1
08	1,700		1.9E0	2.2E0	1.6E0		8.2E0		3.8E-1
10	1,700		1.8E0	2.0E0	1.5E0		1.2E1		
12	1,600		1.6E0	1.7E0	1.5E0		1.2E1		6.0E-1
14	1,600		2.6E0	2.7E0	2.4E0				
16	1,800		1.7E0	1.5E0	1.9E0				7.lE-1
18	1,900		9. 3E-1	8.7E-1	9.9E-1		1.4E1		8.5E-1

÷

.

à

•,

•

Table 5, cont.

Bor	ehole #2	Bore	ehole \$7	Bor	ehole #12
Depth	Nal CPM	Depth	NaI CPM	Depth	NaI CPM
ft		ft		ft.	
ōō	700	00	>50.000	00	1.000
01	1,300	01	>50,000	01	1 500
02	1 000	02	>50,000	02	1,200
03	1,000	02	23,000	02	· 1,300
0.4	1,000	0.0	2,000	03	2,000
04	1,400	04	7,000	04	3,000
05		05	3,000	05	3,500
06	1,400	00	1,300	06	1,500
07	1,400	07	1,000	07	1,000
08	1,300	08	1,000	08	800
09	1,200	09	1,100	09	700
10	1,000	10	1,000	10	700
11	700	11	1,100	11	500
12	800	12	1,200	12	500
13	800	13	1,400	13	350
14	1,200	14	1,200	14	350
15	3,500	15	1,200	15	500
16	11,000	16	1,400	16	350
17	2 500	17	1 500	10	200
18	2,000	10	1,500	10	900
10	1,400	10	1,700	10	900
20	1,000	19	1,700	19	1,000
20	1,000	20	4,000	20	1,500
21	800	21	2,200	21	1,500
22	1,000	22	2,000	22	1,300
23	800		* * -	23	500
24	800			24	600
25	800				
26	1,500		~		
26	1,500		~		
27	1,000				
28	800				
29	600				
30	600				~~~~~
31	500				
32	700				
32	1 000				
3.4	1,000				
25	1,000				*~~~
22	1,000		~~~~~		~~~~
Bore	hole #13	Bore	hole #23	Bore	hole #24
00	900	00	1 100		
01	1,300	01	1 100	10	1 200
02	200	0.2	700	0.7	,∠00 1,200
03	600 600	02	1 200	02	2,000
03	000	03	1,200	20	Ι,000
04	/00	04	1,300	U 4	1,800
05	400	05	900	05	1,600
06	500	06	600	06	1,500

. . . .

i S

į.

•

÷

•

Bor	ehole #13	Bore	ehole #23	Bor	ehole #24
Depth	NaI CPM	Depth	NaI CPM	Depth	Nal CPM
ft		ft		ft	
07	400	07	400	07	1,000
0.8	700	08	300	08	1.000
09	1.000	09	300	09	300
ĩ	900	10	300	10	700
11	600	11	400	11	1,000
12	600	12	400	12	1,800
13	900	12	500	12	1 200
14	600	14	600	14	1 500
15 15	500	15	600	15	700
15	500	16	000 A00	15	600
10	700	10	500	17	500
10	1 000	10	200	10	1 000
10	1,000	10	600	10	1,000
19	000	19	600	19	1 200
20	900	20	500	20	1,200
21	800	21	500	21	1,500
22	800	22	400	22	800
23	/00		~~~~~	23	500
24	900			24	500
Bore	ehole #25	Bore	hole #26	Bor	ehole #27
00	1.200				
01	1 900	10	1.600	01	1.300
02	1,800	02	2,500	02	1,800
02	2 600	02	2,500	02	1,200
0.4	2,000	04	2,000	04	1 200
05	2,400	05	19,000	05	1 300
05	12,200	05	10,000	05	1,500
07	10,000	07	2 100	07	700
09	5 000	07	1 300	08	200
00	1 900	00	2,500	00	300
10	1 700	10	500	10	600
10	1,700	10	500	11	700
10	1 100	10	500	12	700
12	1,100	12	500	12	600
10	500	13	500	13	1 000
14	500	14	500	14	1,000
15	700	15		15	1,300
10	800	16	1,100		800
17	500	17	800	17	900
18	500	18	600	18	500
19	700	19	900	19	400
20	400	20	1,200	20	500
21	400	21	1,000	21	500
22	400	22	1,200	22	700
23	400	23	900	23	1,000
24	900	24	600	24	1,000
25	1,000	25	500	~ ~	
26	600	26	800		

Bor	ehole #25	Bore	hole #26	Bore	ehole \$27
Depth	Nal CPM	Depth	NaI CPM	Depth	NaI CPM
ft		ft			
27	400	27	500		
28	500	28	500		
29	600	29	600		
30	700	รัก	500		
31	700	31	600		
32	1,000	32	700		
รรั	1,700	33	900		
34	1,100	34	600		(in in in in in in
35	1,000	35	800		
36	1,600	36	1,500		
37	1,700	37	1,500		
38	1,100	38	1,000		
		39	1,000		
		•••	2,000		
Bor	ehole #28	Bore	hole #29	Bore	ehole #30
01	1,600	01	1,300	01	600
02	1,200	02	1,300	02	600
03	600	03	1,300	03	800
04	700	04	1,000	04	300
05	1,000	05	800	05	500
06	1,500	06	1,200	06	400
07	1,400	07	1,800	07	500
08	1,100	08	1,400	08	300
09	1,400	09	2,000	09	600
10	1,800	10	2,000	10	1,100
11	1,900	11	1,200	11	600
12	2,800	12	1,200	12	800
13	2,900	13	1,500	13	700
14	9,000	14	1,700	14	1,000
15	32,000	15	1,300	15	1,200
16	4,200	16	600	16	800
17	2,000	17	500	17	300
18	1,600	18	500	18	250
19	1,200	19	600	19	400
20	1,300	20	700	20	500
21	1,100	21	600	21	700
22	500	22	600	22	600
23	500	23	500	23	500
				24	400
				25	600
				26	1,200
				27	500
				28	300
				29	300 600
				31	500
				32	400
				33	400

.,

.

.

,

·.

,

70

. ..

;

.'

۰,

• .

•

Bore	ehole #33	Bore	hole #34	Bor	ehole #35
Depth	NaI CPM	Depth	Nal CPM	Depth	NaI CPM
ft		ft		ft	
01	1,900	01	2,600	01	10,000
02	1,200	02	1,300	02	38,000
03	800	03	1,400	03	>50,000
04	700	04	1,000	04	>50,000
05	600	05	1,500	05	22,000
06	1,000	06	1,500	06	22,000
07	1,000	07	1,000	07	1,500
08	800	08	400	08	1,500
09	800	09	300	09	800
10	500	10	400	10	700
11	500	11	500		700
12	400	12	800	12	600
13	300	13	700	13	
14	00	14	500	14	1,100
15	400	15	600 000	15	1,400
10	500	10	900	10	1,400
1/	900	10	700	10	200
10	900	10	1 200	10	700
19	1,000	20	1,300	19	600
20	1,100	20	400	20	600
21	800	21	400	21	200
		23	300		
Borel	nole #36	Вс	rehole #37	Bor	ehole #38
01	1,200	01	1,500	01	7.000
02	700	02	1 100	02	7,000 8,000
03	1 600	03	1,100	03	12 000
04	1 800	05	1 200	05	22,000
05	2,500	05	1,200	05	>50,000
07	5,000	07	1,700	07	>50,000
0.8	1,700	08	800	08	>50,000
09	1.000	09	800	09	>50,000
10	800	10	800	10	>50,000
11	900	11	1.000	11	>50,000
12	700	12	1,600	12	21,000
13	700	13	1,400	13	7,000
14	800	14	1,500	14	5,000
15	500	15	1,700	15	1,600
16	500	16	1,900	16	1,000
17	600	17	1,800	17	1,000
18	900	18	1,400	18	600
19	800	19	900	19	800
20	700	20	1,000	20	600
21	600	21	1,500	21	400
		22	600	22	700
		23	600	23	1,000
		24	500		

71

Bor	ehole #39	Bore	hole #40	Bore	hole #41
Depth	NaI CPM	Depth	NaI CPM	Depth	NaI CPM
ft		ft		ft	
01	3,000	01	7,000	01	1,400
02	11,000	02	26,000	02	1,400
03	4,000	03	6,000	03	1,200
04	1,900	04	2,100	04	1,500
05	1,000	05	1,600	05	1,900
06	1,500	06	1,900	06	1,200
07	1,000	07	3,500	07	700
08	700	08	5,000	08	600
09	500	09	3,200	09	700
10	500	10	1,500	10	1,000
11	400	11	800	11	1,000
12	500	12	1,200	12	1,300
13	400	13	1,500	13	1,000
14	800	14	1,500	14	600
15	1,200	15	1,300	15	600
16	1,300	16	1,000	16	600
17	900	17	800	17	500
18	600	18	600	18	500
19	700	19	1,200	19	200
20	1,000	20	1,200	20	200
		21	1,300	21	300
		22	1,300	22	300
				23	300
		·		24	500

:

5

*

•

Water Sample Analysis Results

n 1

,

- .

...

.•.

. ..

.

Table 6

Sample

No.	Date	Location	Gross	Alpha	Gross	Beta
			pCi/l		pCi/l	
7001	6/8/81	Surface Water North of Shuman Building	3.11E0	+/-8.8%	2.25E1	+/-3.0%
7002	6/9/81	Surface Water West of Shuman Building	8.00E0	+/-9.98	2.34E1	+/-4.48
7003	6/10/81	Drainage Pipe at NE Boundary	1.56E0	+/-22%	9.88E0	+/-6.8%
7004	6/11/81	Stream Beneath Earth City Expressway (offsite)	1.04E0	+/-148	1.97El	+/-4.8%
7009	6/29/81	Borehole #14	4.50E0	+/-39%	2.23El	+/-14%
7010	6/29/81	Borehole #15	2.60E0	+/-52%	1.52El	+/-17%
7011	6/18/81	Borehole #14	3.12E0	+/-478	1.06E1	+/-20%
7012	6/18/81	Borehole #15	7.10E0	+/-31%	1.66El	+/-16%
7013	6/3/81	Middle Leachate Treatment Lagoon	-1.04E0	+/-275%	1.30E2	+/-5.7%
7014	6/3/81	North Leachate Treatment Lagoon	1.35E0	+∕-55%	1.36E2	+/-5.5%
7015	6/3/81	South Leachment Treatment Lagoon	2.43E0	+/-55%	1.03E2	+/-6.4%
7016	6/3/81	Sludge Drainage Pipe	-1.21EO	+/-2348	9.89El	+/-6.5%
7017	7/10/81	Borehole #14	5.20E-1	+/-115%	3.36El	+/-11%
7018	7/10/81	Borehole #15	6.76E0	+/-32%	3.61El	+/-11%
7019	6/29/81	Surface Pond North of Entrance on St. Charles	1.91E0	+/-60%	3.00El	+/-12%
		Rock Road				
7020	6/17/81	Borehole #15	8.84E0	+/-28%	3.01E1	+/-12%
7021	7/20/81	Tap Water	1.56E0	+/-67%	2 .9 1E1	+/-12%
7022	7/10/81	Middle Leachate Treatment Lagoon	3.45E0	+/-141%	1.07E2	+/&
7023	7/10/81	North Leachate Treatment Lagoon	-2.95E0	+/-189%	1.22E2	+/-5.8%
7024	7/10/81	South Leachment Treatment Lagoon	-1.56E0	+/-179%	8.67El	+/-6.9%
7025	7/21/81	Settling Pond at North Boundary of Site	1.56E0	+/-67%	3.65El	+/-11%
7026	6/17/81	Borehole #14	-8.66E-1	+∕-332₺	3.89El	+/-10%
7027	5/11/81	Standing Water at Earth City Background Site	1.04E0	+/-82&	3.25El	+/-11%
7028	4/29/81	Standing Water at NW Corner of Shuman Building	4.52El	+/-6.2%	8.78El	+/-6.9%
7029	4/29/81	West Ditch Runoff	-2.08E0	+/-131%	-3.62EO	+/-137%
7030	7/28/81	Pond at North Boundary of Site	5.20E-1	+/-115%	3.51El	+/-118
7031	7/28/81	Surface Pond North of Entrance on St. Charles	-1.39E0	+/-203%	2.63El	+/-13%
		Rock Road				
7032	7/30/81	Missouri River Water	-2.6E0	+/-102%	2.63El	+/-13%
7033	7/30/81	Missouri River Water	1.04E0	+/-82%	2.90El	+/-12%
7034	7/28/81	North Leachate Treatment Lagoon	-1.39E0	+/-2038	1.03E2	+/-6.3%
7035	7/28/81	Middle Leachate Treatment Lagoon	1.04E0	+/-82%	8.45El	+/-7.0%

-

Sample No. Date Location Gross Alpha Gross Beta pCi/1 pCi/l 7036 7/28/81 South Leachate Treatment Lagoon -2.95E0+/-189% 6.96E1 +/-7.78 7.3E0 1 11/80 Leachate Observation Well +/-120% 8.0E1 +/-25% Off-site Sample Well 3, West Boundary of Landfill 1.5E1 +/-178 2 10/80 4.1E1 +/-10% Off-site Sample Well 4, North Boundary of Landfill 3 10/80 2.9E0 +/-298 7.6E0 +/-26% Settling Pond North of Landfill 2.9E0 ۵ 11/80 +/-150% 2.6E1 +/-110% Isotopic Analysis Sample Ra-226 pCi/l Location K-40 pCi/l No. Date 74 7014 6/3/81 North Leachate Treatment Lagoon 1.38E2 +/-15% 1.20E0 +/-218 7015 6/3/81 South Leachate Treatment Lagoon 1.36E2 +/-16% 3.92E0 +/-233% 7016 6/3/81 Sludge Drainage Pipe 1.02E2 2.40E0 **≁/**-15% +/-290% 7022 7/10/81 Middle Leachate Treatment Lagoon 1.04E2 +/-18% 2.40E0 +/-290% 7028 4/29/81 Standing Water at NE Corner Shuman Bldg. 1.24E2 +/-28% 1.15E0 +/-195%

e .

Radon Flux Measurements Using Accumulator Method

n...

.

٠.

. .

- 18

Table 7

Date	Time	Location	Environmental Conditions	Flux
				pCi/sq.m-s
04/21	09:33	Base l (Area 2, OllJ)	10 degrees C, damp ground, moderate wind	28
04/21	10:21	Base 2 (Area 2, L38K)	10 degrees C, damp ground, moderate wind	6.7
04/22	11:48	Base l (Area 2, OllJ)	15 degrees C, soaked ground, 1 hour after rain	332
04/22	12:38	Base 3 (Area 2, M99H)	15 degrees C, soaked ground, 1 hour after rain	1.7
04/23	08:24	Base l (Area 2, OllJ)	15 degrees C, damp ground, sunny, last rain approx. 12 hours	293
04/23	09:12	Base 3 (Area 2, M99H)	15 degrees C, damp ground, sunny, last rain approx. 12 hours	, 7.9
04/23	10:00	Base 2 (Area 2, L38K)	15 degrees C, damp ground, sunny, last rain approx. 12 hours	, 5.9
04/24	08:38	Base 3 (Area 2, M99H)	7 degrees C, damp ground, cloudy, last rain approx. 2 days	, 2. 7
04/24	08:40	Base 1 (Area 2, OllJ)	7 degrees C, damp ground, cloudy, last rain approx. 2 days	, 9. 8
04/24	09:29	Base 2 (Area 2, L38K)	7 degrees C, damp ground, cloudy, last rain approx. 2 days	, 1.5
04/27	09:05	Base 3 (Area 2, M99H)	21 degrees C. hot, ground dry, sunny	2.2
04/29	08:52	Base 3 (Area 2, M99H)	18 degrees C, sunny, last rain approx. 12 hours, light breeze	14
04/29	09:36	Base l (Area 2, OllJ)	18 degrees C, sunny, last rain approx. 12 hours, light breeze	540
04/29	11:10	Base 4 (Area 2, i00P)	18 degrees C, sunny, last rain approx. 12 hours, light breeze	63
05/04	10:05	Base 1 (Area 2, 011.1)	Cloudy, drizzle, last heavy rain approx, 1 day	43
05/04	15:34	Base 1 (Area 2_{4} OllJ)	Cloudy, drizzle, last heavy rain approx. 1 day	33
05/05	09:44	Base 1 (Area 2, OllJ)	Cloudy, drizzle, soaked ground, no wind	177
05/06	09:49	Base 1 (Area 2, OllJ)	7 degrees C, windy, wet ground, last rain approx.	269
05/07	09:32	Base 1 (Area 2, OllJ)	10 degrees C, windy, ground dry at surface, sunny	34
05/07	10:48	Base 3 (Area 2, M99H)	10 degrees C, windy, ground dry at surface, sunny	1.5
05/08	09:45	Base 3 (Area 2, M99H)	15 degrees C, cloudy, moderate wind, ground moist	8.5
05/08	10:28	Base 4, (Area 2, 100P)	15 degrees C, cloudy, moderate wind, ground moist	243
05/11	11:43	Base 4 (Area 2, i00P)	13 degrees C, light wind, soaked ground, rain appro)x. 28

Date	Time	Location	Environmental Conditions	Flux
			a	Ci/sa.m-s
05/12	11:15	Base 4 (Area 2, iOOP)	15 degrees C, windy, cloudy, last rain approx. 1 day	310
05/12	12:08	Base 1 (Area 2, OllJ)	15 degrees C, windy, cloudy, last rain approx. 1	18
			day	
05/13	10:10	Base 4 (Area 2, iOOP)	13 degrees C, cloudy, ground moist, last rain	206
			approx. 8 hours	
05/13	10:50	Base l (Area 2, OllJ)	13 degrees C, cloudy, ground moist, last rain	30
			approx. 8 hours	
05/14	10:30	Base 5 (Area 2,)	13 degrees C, cloudy, light wind, drizzle	43
05/14	11:04	Base 6 (Area 1, IOOA)	13 degrees C, cloudy, light wind, drizzle	376
05/15	09:51	Base 6 (Area l, IOOA)	15 degrees C, sunny, light wind	380
05/18	10:13	Base 6 (Area 1, IOOA)	10 degrees C, cloudy, heavy rain last 2 days,	188
			strong wind	
05/19	09:44	Base l (Area 2, OllJ)	10 degrees C, drizzle, ground soaked	8.0
05/19	10:24	Base 4 (Area 2, iOOP)	10 degrees C, drizzle, ground soaked	17
05/19	10:24	Base 6 (Area 1, IOOA)	10 degrees C, drizzle, ground soaked	538
05/20	10:01	Base 1 (Area 2, OllJ)	18 degrees C, no wind, sunny, ground damp	276
05/20	10:41	Base 4 (Area 2, 100P)	18 degrees C, no wind, sunny ground damp	119
05/20	11:23	Base 6 (Area 1, IOOA)	18 degrees C, no wind, sunny ground damp	353
05/21	09:53	Base I (Area 2, OllJ)	21 degrees C, sunny, no wind, dry soil	212
05/21	10:27	Base 4 (Area 2, 100P)	21 degrees C, suny, no wind, dry soil	406
05/27	08:51	Base 6 (Area 1, IOOA)	21 degrees C, sunny, light breeze, dry soil	350
05/27	09:33	Base I (Area 2, OllJ)	21 degrees C, sunny, light breeze, dry soil	596
05/2/	10:12	Base 4 (Area 2, 100P)	21 degrees C, sunnny, light breze, dry soil	865
05/28	08:43	Base 4 (Area 2, 100P)	28 degrees C, dry soil, last rain 2 days 29.90" hg	400
05/28	11:44	Base 4 (Area 2, 100P)	28 degrees C, dry soll, last rain 2 days 29,90" ng	397
05/29	09:14	Area Z, KUUR	29 degrees C, damp soil, light wind	1.8
06/02	14.54	Base 6 (Area 1, 100A)	30 degrees C, dry soll, 29.90" ng	020
06/03	14:04	Base 4 (Area 2_r 100P)	32 degrees C, slight wind, dry soll 29.85 ng	200
00/04	10.10	Base I (Area Z, OIIJ)	34 degrees C, light wind, dry soll	300 0 K
00/04	11-22	$\begin{array}{c} \text{Aled } \mathcal{L}_{F} \text{IUUF} \\ \text{Page } \mathcal{A} (\text{Brea } \mathcal{D} (\text{OD})) \end{array}$	22 degrees C, no wing, damp soll	0.0 2AF
06/08	17:31	Dase 4 (Alea \angle_{g} 100P) Page A (Brop 2 $\pm 00D$)	22 degrees C, dry soil, slight broose	290 570
00/09	10.20	Dase 9 (Aled $2q$ IUUP) Dase 9 (Bross) IOOT)	22 degrees C, dry soll, slight bleeze	3 0
00/09	11.17	Dase o (Alea I, IVVI) Drop 2 MG2I	21 degrees C, dry soil, sciong wind 20 02"	3.0
00/10	10-16	ALEd 2, MOZU	21 degrees C, dry soll, no wind 29.92"	σς τ°ς
11 100	TO:TO	ALEd Z, UUUP	to degrees C, dry sorr, right preeze	20

Date	Time	Location	Environmental Conditions	Flux
				 pCi/sq.m-2
06/11	10:39	Area 2, TOOP	18 degrees C, dry soil, light breeze	85
06/11	12:07	Area 2, h00X	18 degrees C, dry soil, light breeze	1.8
06/11	12:20	Area 2, j00W	18 degrees C, dry soil, light breeze	1.9
06/12	09:56	Area 2, UOOP	26 degrees C, damp soil, light breeze 29.98" hg	14
06/12	10:08	Area 2, TOOP	26 degrees C, damp soil, light breeze 29.98" hg	35
06/12	11:20	Area 2, hOOX	26 degrees C, damp soil, light breeze 29,98" hg	0.6
06/12	11:30	Area 2, j00W	26 degrees C, damp soil, light breeze 29.98" hg	1.0
06/15	10:03	Area 2, IOOL	29 degrees C, dry soil, gusty, 760.5mm hq	0.8
06/15	10:15	Area 2, JOOL	29 degrees C, dry soil, gusty, 760.5mm hg	0.7
06/23	10:17	Earth City, offsite bkg	27 degrees C, damp soil, no wind 30.14 hg	0.5
06/23	13:50	Taussig Rd, offsite bkg	27 degrees C, damp soil, no wind 30.14 hg	1.5
06/29	10:03	Area 2m UOOP	n/a	16
07/06	10:20	Base 4 (Area 2, iOOP)	Damp soil, slight breeze	138
07/06	11:24	Taussig Rd, offsite bkg	Damp soil, slight breeze	0.3
07/08	14:00	Area 2, J30L	31 degrees C, dry soil, slight breeze, 30.20" hg	0.4
07/08	14:30	Area 2, H040	31 degrees C, dry soil, slight brze, 30.20" hg	0.4
07/10	10:19	Taussig Rd, offsite bkg	Damp soil, started to rain during accumulation	0.3
07/10	10:09	Old St. Charles Rock Rd Bkg	Damp soil, started to rain during accumulation	1.0
07/16	10:49	Area I, MIUG	26 degrees C, damp soil, 29.96" hg	22
07/17	10:10	Area I, MIUG	25 degrees C, dry soil, no wind, 30.02" hg	14
07/20	10:25	Base 6 (Area 1, IOOA)	30 degrees C, damp soil, mild wind, 29.86" hg	5 9
07/22	11:25	Old St. Charles Rock Rd Bkg	26 degrees C, damp soil, no wind 30.10" hg	<0.1
07/24	08:14	Area 1, MIUG	24 degrees C, damp soil, light wind, 30.06" hg	15
07/24	08:31	Area 2, pU/S	24 degrees C, damp soil, light wind, 30.05" hg	168
07/28	09:05	Area 2, pu/S	23 degrees C, damp soil, mild wind, 30.06" hg	34
07/28	09:23	Area I, MIUG	23 degrees C, damp soil, mild wind, 30.06" hg	61
07/29	00:09	Base 8 (Area 1, 1001)	18 degrees C, damp soil, light wind, 30.21" hg	0.5
07/29	10.04	Area 2, pu/S	18 degrees C, damp soil, light wind, 30.21" hg	173
07/29	10:04	The st. Charles Rock Rd Bkg	21 degrees C, damp soll, light wind, 30.21" hg	0.3
07/29	10:20	Aron 2 p075	21 degrees C, damp soll, light wind, 30.21" hg	U.2
07/30	00:09	ALCA 2, 10/3	25 degrees C, dry soll, sunny, light wind, 30.21"	ng 38
07/30	00:10	Alea I, UUUM Ald St Charles Book Bd Bbo	23 degrees C, dry soil, sunny, light wind, 30.21"	ng 3.2
07/30	10.09	Area 3 OAAM	21 degrees C, ary Soll, Sunny, light wind, J0.21 n	2 0 . 2
07/51	10:00	ALCA I, UVUN	24 degrees of very dry sorr, summy, right wind,	2.0
			20.22 HA	

• 1

د

ь

•

•

٠,

۰.

- •

•

Date Time	Location	Environmental Conditions	Flux
07/31 10:13	Area 1, EOOF	24 degrees C, very dry soil, sunny, light wind, 30.25" hg	pCi/sq.m-2 0.5
08/03 10:11 08/03 10:14 08/04 09:05 08/04 09:11 08/05 09:21 08/05 09:25 08/06 08:35 08/06 08:40 08/07 09:08 08/07 09:15 08/17 10:05 08/17 10:10 08/18 09:14	Area 1, E00F Area 1, O00M Area 1, E00F Area 1, E00F Area 1, E00F Area 1, E00F Area 1, E00F Area 1, M10G Area 2, p07S Base 8 (Area 1, I00I) Area 2, I00F Area 2, I00L Area 2, I00L	30.25" ng 25 degrees C, dry soil, light wind, 29.94" hg 25 degrees C, dry soil, light wind, 29.94" hg 29 degrees C, dry soil, light wind, 30.04" hg 29 degrees C, dry soil, light wind, 30.04" hg 28 degrees C, dry soil, light wind, 30.07" hg 28 degrees C, dry soil, light wind, 30.07" hg 27 degrees C, dry soil, light wind, 30.01" hg 20 degrees C, dry soil, light wind, 30.08" hg 20 degrees C, dry soil, light wind, 30.01" hg 20 degrees C, dry soil, light wind, 30.01" hg 20 degrees C, dry soil, light wind, 30.01" hg 20 degrees C, dry soil, light wind, 30.00" hg 20 degrees C,	3.4 0.4 6.4 0.5 9.6 9.6 0.4 5.1 122 0.4 0.6 0.3 <0.1
08/18 09:17 08/19 09:34 08/19 09:40	Area 2, IOOF Area 2, IOOL Area 2, IOOF	<pre>18 degrees C, dry soil, no wind, 30.11" hg 18 degrees C, dry soil, no wind, 30.11" hg 18 degrees C, dry soil, no wind, 30.11" hg</pre>	0.5 0.3 0.4

▲ i

.

ъ

Radon Flux Measurements Using the Charcoal Canister Method

Table 8

	S	ampling		
Date	Location T	'ime(sec)	Enviromental Conditions	Flux
				pCi/sq.m-s
06/02	Base 6 (Area l, IOOa)	6,000	30 degrees C, dry soil, 29.90" hg	362
06/03	Base 4 (Area 2, iOOP)	4,980	32 degrees C, dry soil, light wind, 29.85" hg	29
06/03	Base 4 (Area 2, iOOP)	1,200	32 degrees C, dry soil, light wind, 29.85" hg	613
06/04	Base l (Area l, OllJ)	7,200	34 degrees C, dry soil light wind	147
06/10	Base 8 (Area 2, IOOI)	55 , 320	21 degrees C, dry soil, no wind, 29.92" hg	2.0
06/10	Area 2, MOOI	18,000	21 degrees C, dry soil, no wind, 29.92" hg	2.3
06/11	Area 2, LOOG	60,300	18 degrees C, dry soil, light breeze	163
06/11	Area 2, UOOP	22,500	18 degrees C, dry soil, light breeze	44
06/18	Area 2, 100S	54,900	n/a	2.2
06/12	Area 2, TOOP	17,640	26 degrees C, damp soil, light breeze, 29.98" hg	30
06/23	Earth City, offsite bkg	21,600	27 degrees C, damp soil, no wind, 30.14" hg	0.9
06/24	Taussig Road, offsite bkg	61,200	n/a	0.8
06/30	Area 2, pOOJ	55,320	n/a	8.7
06/30	Area 2, UOOP	20,940	n/a	74
07/01	Old St. Charles Rd, bkg	20,040	n/a	0.8
07/06	Area 2, iOOP	50,400	Damp soil, light breeze	178
07/08	Area l, H25N	14,100	31 degrees C, dry soil, slight breeze, 30.20" hg	0.9
07/08	Area 2, J30L	50,140	31 degrees C, dry soil, slight breeze, 30.20" hg	0.3
07/10	Area l, IOOL	22,540	Damp soil, during rain	0.6
07/15	Old St. Charles Rock Rd, bkg	54,540	n/a	1.6
07/16	Area l, MlOG	22.380	26 degrees C, damp soil, 29.96" hg	24
07/17	Area l, M10G	57,240	25 degrees C, dry soil, no wind, 30.20" hg	14
07/20	Base 6 (Area l, IOOA)	5,880	30 degrees C, damp soil, mild wind, 29.86" hg	13
07/22	Old St. Charles Rock Rd, bkg	j 68,640	26 degrees C, damp soil, no wind, 30.10" hg	0.3
07/23	Area l, MlOG	60,960	n/a	4.5
07/28	Area l, MlOG	61,560	23 degrees C, damp soil, 30.06" hg	9.1
07/28	Area 2, pO4S	63,240	23 degrees C, damp soil, 30.06" hg	32
07/29	Area l, 100I, Base 6	57,540	18 degrees C, damp soil, light wind, 30.21"hg	0.4
07/29	Area l, OOOI	57,960	18 degrees C, damp soil, light wind, 30.21" hg	1.3
07/30	Area 2, p04S	55,080	23 degrees C, dry soil, light wind, 30.21" hg	212
07/30	Area 1, ÕOOM	56,820	23 degrees C, dry soil, light wind, 30.21" hg	7.6
07/31	Area l, EOOF	56,340	24 degrees C, very dry soil, light wind, 30.25" h	ig 0.4
07/31	Area l, OOOM	56,220	24 degrees C, very dry soil, light wind, 30.25" h	ig 5.2
08/05	Area l, EOOF	52,800	28 degrees C, dry soil, light wind, 30.07" hg	0.6

97

 $\left(\right)$

 ∞x

ě,

۰.

۰.

1.

- 5

Side-By-Side Radon Flux Measurements, Accumulator versus Charcoal Canister Methods

۶ L

_

Ļ

•

Table 9

.

1

Location	Date	Charcoal Canister	Accumulator
		pCi/sa.m-2	pCi/sg.m-2
Base 6	6-2	400	740
Base 4	6-3	680	790
Base 1	6-4	170	370
Base 8	6-9	2.1	3.0
Base 3	6-10	2.4	1.3
Borehole 3	6-11	50	38
TOOP(Area 2)	6-12	30	35
Earth City	6-23	0.9	<1
Taussig Road	6-24	0.8	1.5
Base 4	7-6	180	140
Borehole 2	7-8	<0.5	<1
MlOG(Area l)	7-16	22.2	22.3
M10G(Area 1)	7-17	13.4	14.0
Base 6	7-20	14.1	59.2
Old St. Charles Rd	7-22	0.3	<1
MlOG(Area l)	7-24	4.6	15.3
M10G(Area 1)	7-28	9.8	60.5
20' W of Borehole #20	7-28	36.4	34.3
Base 8	7-29	0.5	0.5
20' W of Borehole #20	7-30	218	38
OOOM(Area 1)	7-30	2.9	3
OOOM(Area l)	7-31	5.8	0.2

Working Level (WL) and Long-Lived Gross Alpha Activity on High Volume Air Samples

.

..

٠.

. N

· ·

Table 10

Sample Duration: 10 min. Flow Rate: 570 l/min. Total Volume: 1.4E6 ml

Date/Time	Location	7 Day Activity	WL
0105010005		uCi/cc	
8105010805	outside Trailer	2.03E-13+/-122*	.0016
8105010819	Outside Trailer	2.66E-13+/-103%	.0015
8105010918	Base 3	0+/-2118	.0010
8105010931	Base 1	3.13E-13+/-93%	.0008
8105040942	Outside Trailer	4.69E-14+/-365%	.0010
8105041013	Base 1	1.09E-13+/-188%	.0009
8105041124	COOG	4.69E-14+/-365%	.0012
8105041150	Base 4	2.66E-13+/-103%	.0016
8105111034	Earth City Background	4.69E-14+/-365%	.0003
8105121046	Earth City Background	4.69E-14+/-365%	.0004
8105121402	Outside Trailer	0+/-211%	.0002
8105121447	Base 4	4.22E-13+/-78%	.0006
8105121504	Outside W-L Office Bldg	7.34E-13+/-57%	.0003
8105121528	Base 1	1.56E-13+/-145%	.0002
8105121551	TOOP	4.69E-14+/-365%	.0003
8105131154	ZOON	4.69E-14+/-365%	.0010
8105151010	Base 6	2.03E-13+/-122%	.0003
8105151035	Base 7	1.09E-13+/-188%	.0002
8105181022	Base 6	2.03E-13+/-122%	.0003
8105201107	Base 4	2.66E-13+/-103%	.0004
8105201137	Base 6	2.66E-13+/-103%	.0004
8105270821	Inside Trailer	l.41E-12+/-40%	.0110
8105271040	Base 6	7.81E-13+/-55%	.0002
8106021429	000J	2.03E-13+/-122%	. 0007
8106021450	h000	4.69E-14+/-365%	.0007
8106080957	Drilling Borehole #1	1.56E-13+/-146%	.0006
8106081335	Drilling Borehole #2	4.69E-14+/-365%	.0005
8106091015	Drilling Borehole #3	7.34E - 13 + 7.57	°0009
8106091318	Drilling Borehole #4	1.15E-11+/-148	.0020
8106091350	Drilling Borehole #4	8.55E-12+/-16%	.0027

Table 10, cont.

Date/Time	Location	7 Day Activity	WL
		uCi/cc	
8106100945	Drilling Borehole # 5	2.66E-13+/-1039	.0012
8106101231	Drilling Borehole #7	4.22E-13+/-78%	.0015
8106101411	Drilling Borehole #8	4.22E-13+/-78%	.0012
8106231028	Earth City Background	1.09E-13+/-1889	۵005 ئ
8106231146	Inside Shuman	1.98E-12+/-33%	.0011
8106231407	Taussig Rd Background	4.69E-14+/-365	۵۵۵۵5 в
8106300931	Borehole #32	4.69E-14+/-3659	0006 ه
8107070919	Old St. Charles Rd Bkg	0+/-211%	.0017
8011130845	Area 1, Near Road		.017
8011131030	Area l Highest Ext. Level		.014
8011131445	Area 2 Highest Ext. Level		.019
8011131507	Area 2 Suspected Surface Mat.		.038
8011140735	Inside Shuman Building		.031
		Isotopic Ac	tivities
Date/Time	Location	U-238	Ra-226
Composite Sample	All Onsite Samples	9.1E-14+/-1%	4.3E-14+/-18

Note: Individual sample sensitivities are low due to short sampling time. However, all gross alpha activities except two are less than the maximum permissible concentrations (MPCs) for U-238 or Ra-226, for unrestricted areas, as listed in Appendix B, Table II, of 10CFR20. (These MPCs are 3.0E-12 uCi/cc for either nuclide.) The two exceptions occurred when drilling through contaminated materials.

...

Gamma Analysis of High Volume Air Samples for Rn-219 Daughters (Pb-211)

۱

6

٠.

.....

.

Table ll

			Sample Ac 405 KeV	tivity (uCi) 427 KeV	/cc) at 832 KeV	Average	
Date	Time	Location	(3.4% ab)	(1.8% ab)	(3.4% ab)	uCi/cc	
6/3	14:21	Base 4 (Area 2, i00P)	2.3E-10		2.5E-10	2.4E-10	
6/4	8:31	Base l (Area 2, O00J)	5.7E-11			5.7E-11	
6/4	12:30	Base 4	1.0E-9	8.9E-10	9.3E-10	9.5E-10	
6/18	14:00	Base 4	5.6E-10	4.8E-10	4.6E-10	5.0E-10	
6/29	12:23	Base 6 (Area l, NOOA)	9.0E-11		1.3E-10	l.1E-10	

ĩ

۰,

.

		1. (TOTO) *		571 991		* 671 91 12	67. 98 ¢
Parameter	UNIUS	<u>dr</u>	611-6	64-72		16-679	67-33
Antimony	mg/kg	0.077	0.268	0.325	0.355	0.218	21.0
Arsenic	mg/kg	0.62	6.0	7.0	2.0	4. 0	1.0
Beryllium	mg/kg	0.038	0.12	0.24	0.18	0.20	0.14
Caomi um	mg/kg	0.052	2.2	2.3	2.27	4.0	37.5
Chromi um	mg/kg	1.41	40.9	34	7.0	26.2	215
Copper	mą∕kg	0.459	1039	88	23.2	131.6	356
Cyanide	mg∕kg	0.10	0.028	0.12	1.61	0.376	0.97
Lead	mą/kg	19.7	356	431	49.0	251.6	1490
Mercury	mg/kg	5	6.22	0.36	0.14	0.10	0.84
Nickel	mg/kg	3.00	3 ε°0	45.1	11.3	ୡ	218.0
Selenium	ng/kg	0.12	1.6	1.2	1.2	1.2	0.9
Silver	mg/kg	0.134	0.580	0.369	0.165	0.264	0.409
Thallium	mg/kg	14.0	10.0	2.0	<0.1	0.6	3.5
Zinc	mg/kg	41.4	246	270	180	89	2395

Results	Q£	Cremi	<u>cal</u>	Analyces	œ	
We	est	Lake	Lan	dfill		
7 JULY 1981						

* WTP - Waste treatment plant leachate sludge BH-2 - Auger hole 2, Area 2
BH-13 - Auger hole 13, Area 2
BH-25 - Auger hole 25, Area 1
BH-31 - Auger hole 31, Area 2
BH-35 - Auger hole 35, Area 2

i

.

Summary of Organic Priority follutant analysis

CLII	DNT_	Wes	t Lake		2					
Clii	M	I.D	W.T.P.	(NPDES)	DATE	Sample I	RECEIVED	6 July	1981	
RMC].0		#569		DATE	Analysi:	5 COMPLETED	16	July 2	1981

ACID COMPOUNDS

0-

	Fa\1
2,4,6-trichlorophenol	ND
o-chloro-m-cresol	ND
2-chlorophenol	ND
2,4-dichlorophenol	ND
2,4-dimethylphenol	ND
2-nitrophenol	ND
4-nitrophenol	*
2,4-dinitrophenol	*
4,6-dinitro-o-cresol	ND
pentachlorophenol	ND
phenol	8.1

ND - Less than 1 yg/1 · - Less than 25 yg/1 · - Less than 250 yg/1

.

4

•

SUMMARY OF ORGANIC PRIORITY POLLUTANT ANALYSIS

CLIENT West	Lake		-	
CLIENT I.D	<u>W.T.P.</u>	(NPDES)	<u>_</u> DATE	SAMPLE RECEIVED 6 July 1981
FX I.D	#569		<u>D</u> ATA	ANALYSIS COMPLETED 22 July 1981

BASE/NEUTRAL COMPOUNDS

	<u>nd/J</u>		<u>yg/1</u>
scenapht hene	ND	nitrobenzene	<u>ND</u>
benzidine —	<u></u>	N-nitrosodimethylamine	합☆
1,2,4-trichlorobenzene	ND	N-nitrosodiphenylamine	<u>ታ</u> ታ
hexachlorobenzene	ND	N-nitrosodi-n-propylamine	<u>ជំជ</u>
hexachlorcethane	ND	bis(2-ethylhexyl)phthalate	\$
bis(2-chlorcethyl)ether	ND	butyl benzyl phthalate	ND
2-chloronaphthalene	ND	di-n-butyl phthalate	ND
1,2-dichlorobenzene	ND	di-n-octyl phthalate	ND
1,3-dichlorobenzene	ND	diethyl phthalate	ND
1,4-dichlorobenzene	ND	dimethyl phthalate	ND
3,3'-dichlorobenzidine	\$	benzo (a) anthracene	ND
2,4-dinitrotoluene	* *	benzo(a)pyrene —	ND
2,6-dinitrotoluene	\$ 	benzo(b)fluoranthene	ND
1,2-diphenylhydrazine	ND	benzo(k)fluoranthene ^l	ND
fluoranthene	ND	chrysene	ND
4-chlorophenyl phenyl ether	ND	scenaphthylene	ND
O-bromophenyl phenyl ether	ND	anthracene	<u>ND</u>
bis(2-chloroisopropyl)ether	\$	benzo (g.h.i.) perylene	ជ
bis(2-chlorcethoxy)methane	ND.	fluorene	ND
hexachlorobutadiene	ND	phenanthrene	ND
hexachlorocyclopentadiene	¢	dibenzo (a,h)anthracene	<u>ن</u>
isophorone	ND	indeno(1,2,3-c,d)pyrene	ND
naphthalene'	O	pyrene	ND
bis(chloromethyl)ether =	<u><u></u></u> <u><u></u></u>	2,3,7,8-tetrachlorodibenzo-	
		p-dioxin	<u>습</u> 쇼

ND - Less than $1 \mu g/l$ \circ - Less than $10 \mu g/l$ $\circ \circ$ - Less than $25 \mu g/l$

Benzo(b)fluoranthene and benzo(k)fluoranthene could not be resolved, values reported indicate the sum of both compounds.

SUMMARY OF OPENNIC PRIORITY POLLUTANT ANALYSIS

CLIENT West I	.ake		-			
CLIENT I.D.	W.T.P.	(NPDES)	DATE	Sample	RECEIVED	6 July 1981°
FXC I.D.	#569		DATE	ANALYSI	IS COMPLETE	0 24 July 1981

1

۵

·,

.'

...

.

PESTICIDES

	<u>ha/j</u>		<u>nd\J</u>
aldrin	ND	0 -84C	<u>ND</u>
dieldrin	ND	b-BHC	ND
chlordane	ND	6-BHC	\$
4,4'-DDT	ND	g-BHC	ND
4,4'-DDE	ND	PCB - 1242	ND
4,4'-DDD	ND	PCB - 1254	
endosulfan I	*	PCB - 1221	ND
endosulfan II	\$	PCB - 1232	ND
endosulfan sulfate	\$	PCB - 1248	ND
endrin	*	PCB - 1260	ND
endrin aldehyde	*	PCB - 1016	ND
heptachlor	ND	toxaphene	ND
heptachlor epoxide	\$		

ND - Less than 1 µg/1 ° - Less than 10 µg/1

Summary of Organic Frighty follutant analysis

CLILWT W	est Lake			
CLIENT I.D.	H.T.P.	(NPDES)	DATE SAMPLE RECEIVED	6 July 1981
R-C I.D	\$\$69		DATE ANALYSIS COMPLETED	<u>5 August 1981</u>

VOLATILES

	<u>vg/1</u>		<u>ka/1</u>
æcrolein	\$ \$	l,2-dichloropropana	ND
æcrylonitrile	<u><u><u></u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	l,3-dichlorcpropylens ¹	û
benzene	2.0	@thylbenzene	ND
carbon tetrachloride	\$	methylene chloride	15.6
chlorobenzene	ND	methyl chloride	\$
1,2-dichlorcethane	ND	methyl bromide	<u>ಬ</u>
l,l,l-trichloroethane	ND	bromoform	ND
l,l-dichloroethane	ND	dichlorobromomethane	ND
1,1,2-trichloroethane	ND	trichlorofluoromethane	2.3
1,1,2,2-tetrachloroethane	ND	dichlorodifluoromethans	ជ
Chloroethane	¢	chlorodibromomethane	ND
2-chlorouthylvinyl ether	¢	tetrachlorosthylens	ND
chloroform	4.3	toluzne	1.8
l,l-dichloroethylene	ND	trichloroethylene	ND
1,2-trans-dichlorosthylens	\$	vinyl chloride	±

۵

ND - Less than 1 μ g/l $^{\circ}$ - Less than 10 μ g/l $^{\circ\circ}$ - Less than 100 μ g/l

1, 3-cis-dichloropropylene and 1, 3-trans-dichloropropylene could not be received, values reported indicate the sum of both compounds.

SUMMARY OF ORGANIC PRIORITY POLLUTANT ANALYSIS

CLILAT West Lake		5	
CLIENT I.D	(NPDES)	DATE SAMPLE RECEIVED	6 July 1981
RAC I.D#570		date Analysis complete	D 16 July 1981

ACID COPPOUNDS

...

	<u>Fd/1</u>
2,4,6-trichlorophenol	ND
o-chloro-m-cresol	ND
2-chlorophenol	ND
2,4-dichlorophenol	ND
2,4-dimethylphenol	ND
2-nitrophenel	ND
6-nitrophenol	*
2, 4-dinitrophenol	*
4,6-dinitro-o-cresol	
pentachlorophenol	<u></u>
phenol	

ND - Less than 1 µg/1 ° - Less than 25 µg/1 ⁸⁸ - Less than 250 µg/1

٠,

!

۲ ۱ ۵

,

SLAMMRY OF OSCANIC FRICHITY POLLUTANT ANALYSIS

÷

.

CI.II:%F	West Lake						
CLIENT I.	D 84_2	(NPDES)	DATE	Sample 1	RECT. IVEO	<u>A July 19</u>	<u>ai</u>
RXC 1.D	<u>۵570</u>		DATA	ANALYSI	S COMPLETED	<u>55 Yrjà</u>	1981

BASE ATELITRAL COMPOUNDS

	<u>Ma/1</u>		
acenaptit here		ni trobenzene	Þ
benzidine	\$\$	N-nitrosodimethylemine	L
1,2,4-trichlorobenzene	ND	N-nitrosodiphenylamina	-
hexachlorobenzene	ND	N-nitrosodi-n-propylamina	
hexachloroethane	ND	bis(2-ethylhexyl)phthalate	
bis(2-chlorcethyl)ether	<u>ND</u>	butyl benzyl phthalate	
2-chloronaphthalene	ND	di-n-butyl phthelate	0
1,2-dichlorobenzenz	ND	di-n-octyl phthalate	•
1, 3-dichlorobenzene	ND	diethyl phthalate	
1,4-dichlorobenzene	ND	dimethyl phthalate	
3,3°-dichlorobenzidine	\$ }	benzo (a) anthracene	•
2,4-dinitrotoluene	<u><u><u></u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	benzo(a)pyrene	•
2,6-dinitrotoluene	ND	benzo(b)fluoranthene	
1,2-diphenylhydrazine	ND	benzo(k)fluoranthene ^l	
fluoranthene	ND	chrysene	
0-chlorophenyl phenyl ether		coenaphthylene	
0-bromophenyl phenyl ether	<u> </u>	anthracene	
bis(2-chloroisopropyl)ether	<u> </u>	benzo (g.h.i.) perylene	
bis(2-chloroethoxy)methane	<u> </u>	fluorenz	
hexachlorobutadiene		phenanthrenz	
hexachlorocyclopentadiene	<u>ل</u>	dibenzo (a,h)anthrecene	
isophorone		indeno(1,2,3-c,d)pyrene	
najihtha] ene'		baleus	
bis(chloromethyl)ether	<u>ት</u>	2,3,7,8-tetrachlorodibenzo-	

RD - Less than $1 \mu g/1$ \circ - Less than $10 \mu g/1$ $\circ \circ$ - Less than 25 \mu g/1

4

lenzo(b) fluoranthene and benzo(k) fluoranthene could not be resolved, values reported indicate the sum of both compounds.

p-dioxin

SUMMARY OF ORGANIC PRIORITY POLLUTANT ANALYSIS

CLIENT West	Lake			
CLIENT I.D.	BH-2 (NP	DES) DATE	SAMPLE RECEIVED	<u>6 July 1981</u>
FMC 1.D	#5 7 0	DATE	ANALYSIS COMPLETED	24 July 1981

PESTICIDES

	<u>kav</u>		Ma/1
aldrin	\$ 	0-24C	<u>ង</u>
dieldrin	ND	b-Brc	ND
chlordane	ND	6-BHC	\$
4,4'-DDT	ND	8- 3 1.C	ND
4,4'-DDE	ND	PCB - 1242	ND
4,4'-DDD	ND	PCB - 1254	ND
endosulfan I	¢	PCB - 1221	ND
endosulfan II	¢	PCB - 1232	ND
endosulfan sulfate	*	PCB - 1248	ND
endr in	\$	PCB - 1260	ND
endrin aldehyde	\$	PCB - 1016	ND
heptachlor	ND	toxaphene	ND
heptachlor epoxide	\$		

MO = Less than 1 µg/1 $\circ = Less than 10 µg/1$

•

•

*

.

_

•

SLMMARY OF ORGANIC PRIORITY POLLUTANT AWALYSIS

'n

2

CLIIST W	est Lake		
CLIEWT I.D	<u>8H-2</u>	(NIPDES)	DATE SAMPLE RECEIVED 6 July 1981
RC I.D	♯57 0		DATE ANALYSIS COMPLETED 5 August 1981

VOLATILES

	<u>vq/1</u>		<u>49/1</u>
acrolein	<u></u>	l,2-dichloropropane	ND
acrylonitrile	<u>요</u> 주	l,3-dichloropropylene ^l	\$=
benzene	<u> </u>	ethylbenzene	1.2
carbon tetrachloride	*	methylene chloride	2].4
chlorobonzene].9	methyl chloride	\$
1,2-dichloroethane		methyl bramide	
1,1,1-trichloroethane	ND	bramoform	ND
l,l-dichloroethane	ND	dichlorobromomethane	ND
1,1,2-trichloroethane	ND	trichlorofluoromethane	2.4
1,1,2,2-tetrachloroethane	ND	dichlorodifluoromethane	\$
chlorcethane	*	chlorodibromomethane	ND
2-chlorouthylvinyl ether	ND	tetrachlorcethylene	1.7
chloroform	6.2	toluene	7.3
l,l-dichlorouthylene	ND	trichlorcethylene	1.7
l, 2-trans-dichloroethylune		vinyl chloride	Ŷ

ND - Less than 1 µg/kg ° - Less than 10 µg/kg

an - Less than 100 µg/kg

1,3-cis-dichloropropylene and 1,3-trans-dichloropropylene could not be resolved, Values reported indicate the sum of both compounds.

SLAMARY OF ORGANIC PRIORITY POLLUTANT ANALYSIS

CLILMT West	: Lake		
alent I.D	BH-13	(NPDES)	DATE SANPLE RECEIVED 6 July 1981
FXC I.D	#571		DATE ANALYSIS COMPLETED 16 July 1981

ACTO COMPOUNDS

. ^{ka} \7
ND
र्ष
ND
ND
<u></u>
2.6

MD = Less than 1 yg/10 = Less than 25 yg/100 = Less than 250 yg/1

.

.

-

HIPPARY OF ORGANIC PRICHITY POLLUTANT ANALYSIS

÷

;

.

CLIPPI	Vest Lake			
Clime I.D	®प्त-13	(NPDES)	DATE SAMPLE RECEIVED	6 July 1981
RMC I.D.	\$571		DATA ANALYSIS COMPLETED	22 July 1981

BASE MELTRAL COMPOUNDS

	1/12		<u>yq/1</u>
aconsplittene	<u>kD</u>	ni trodenzene	
tranzidine	<u>ት ተ</u>	N-nitrosodimethylemins	¢¢
1,2,4-trichlorobenzene	ND	N-nitrosodiphenylemine	ជំ <u>ជំ</u>
hexachlorobenzene	ND	N-nitrosodi-n-propylemins	<u>슈</u> 슈
hexachloroethane	\$	bis(2-ethylhexyl)phthalate	10.1
bis(2-chlorcethyl)ether	¢	butyl benzyl phthalate	\$
2-chloronaphthalene	ND	di-n-butyl phthalate	
1,2-dichlorobenzene	ND	di-n-octyl phthalate	ND.
1,3-dichlorobenzene	ND	dicthyl phthalate	ND
1,4-dichlorobenzene	ND	dimethyl phthalate	ND
3,3'-dichlordenzidine	\$	benzo (a) anthracene	ND
2,4-dinitrotoluene	* *	benzo (a) pyrene	\$
2,6-dinitrotoluene	\$	benzo(b)fluoranthene ^l	\$
l,2-diphenylhydrazine	\$	benzo(k)fluoranthene ^l	<u>t</u>
fluoranthene	ND	curysens	\$
4-chlorophenyl phenyl ether	¢	compathylene	ND
4-bromophenyl phenyl ether	û	onthracene	ND
bis(2-chloroisopropyl)ether	\$ 	benzo (g.h.i.) perylene	ជ្ <u>ន</u>
bis(2-Shloroethoxy)methane	\$	llnokeus	ND
hexachlorobutadiena	ਸ 	phenenthr ene	.CDA.
lexadilorocyclopentadiene	\$	dibeneo (a,h)anthrecene	☆☆
isophorone	\$	indeno(1,2,3-c,d)pyrene	¢
naj htha) ene '	ND	pyrene	ND
bis (chlorancthyl)ether	បំជ 	2, 3, 7, 6-tetrachlorodibenzo-	
		- Alexie	\$ \$

 \dot{N} - Less than 1 µg/1 \dot{n} - Less than 10 µg/1 \dot{n} - Less than 25 µg/1

Lenzo (b) fluoranthene and benzo (k) fluoranthene could not be resolved, values reported indicate the sum of both compounds.

p-diexin

Summary of organic priority follutant analysis

GLIENT West L	ake			
CLIENT I.D	BH-13	(NPDES)	DATE SAMPLE RECEIVED	6 July 1981
RC I.D	#571		DATE ANALYSIS COMPLETED	24 July 1981

PESTICIDES

	Nav1		Ma/1
aldrin	*	345-3	<u>ہ</u>
dieldrin	\$	b-ahc	<u>t</u> a
chlordane	ND	6-BHC	술
a, a'-ddt	\$	g-BHC	\$
4,4'- DDE	*	PCB - 1242	<u>ND</u>
4,4'-DDD	£	PCB - 1254	ND
e ndosulfan I	ф	PCB - 1221	<u>ND</u>
endosulfan II	ਹੇ 	PCB - 1232	N
endosulfan sulfate	*	PCB - 1248	ND
adrin	÷	PCB - 1260	ND
andrin aldehyde	<u>t</u>	PCB - 1016	ND
heptachlor	<u>ф</u>	tossaphene	ND
heptachlor epoxide	\$		

NO - Less than 1 µg/l ° - Less than 10 µg/l

,

:

. ,

-

ł

i

SUMMARY OF ORGANIC PRIORITY FOLLUTANT ANALYSIS

.

CLIENT West	: Lake		
CLIENT I.D.		(NPDES)	DATE SAMPLE RECEIVED 6_July_1981
R-C I.D	<u>#571</u>		DATE APALISIS COMPLETED 5_August_1981

VOLATILES

	<u>vq/1</u>		19/1
acrolein	₩ ₩ ₩	1,2-dichloropropene	ND
acrylonitrile	<u></u>	l,3-dichloropropylene ^l	\$
benzene	<u>ND</u>	ethylbenzene	A
carbon tetrachloride	\$ 1	methylene chloride	
chlorobenzene	ND	methyl chloride	\$
l,2-dichlorcethane	ND	methyl bromide	\$
1,1,1-trichloroethane	ND	branoform	ND
1,1-dichloroethane	ND	dichlorobromomethane	ND
1,1,2-trichloroethane	ND	trichlorofluoromethane	33.8
1,1,2,2-tetrachloroethane	ND	dichlorodifluoromethane	\$
chloroethane	\$	chlorodibromomethane	<u>ND</u>
2-chlorouthylvinyl ether	ND	tetrachloroethylene	4.6
chlorofonii	7,8	koluene	ND
l,l-dichloroethylene	ND	trichlorcethylene	1.8
], 2-trans-dichlorosthylens	ND	vinyl chloride	\$

ND - Less than 1 yg/kg a - Less than 10 yg/kg aa - Less than 100 yg/kg

.

11,3-cis-dichloropropylene and 1,3-trans-dichloropropylene could not be resolved, values reported indicate the sum of both compounds.

Semary of organic priority pollutant analysis

CLIDNT West	t Lake					
Client I.D	BH-25	(NPDES)	DATE	sakple ri	DE IVED	6 July 1981.
RXC I.D	₿572		DATE /	Malysis	OMPLETED	16 July 1981

ACID COMPOUNDS

	<u>pq/1</u>
2,4,6-trichlorophanol	ND
o-chloro-m-creeol	ND
2-chlorophenol	ND
2, 4-dichlorophenol	ND
2,4-dimethylphenol	ND
2-nitrophenol	ND
4-nitrophenol	\$
2,4-dinitrophenol	**
4,6-dinitro-o-cressi	\$
pentachlorophenol	ND
phenol	52.8

ND - Less than 1 µg/1 ° - Less than 25 µg/1 ° - Less than 250 µg/1

á

•

÷

:

.

SLAFANKY OF ORGANIC PRICHITY POLLUTANT ANALYSIS

CI.II:NT We	st Lake		
CLIENT I.D.	EH-25	(NPDES)	DATE SAMPLE RECEIVED 6 July 1981
RXC I.D	Ø 5 72		DATA ANALYSIS COMPLETED 22 July 1981

BASE ADDITRAL COMPOUNDS

	<u>na/1</u>		<u>na/j</u>
20enaphithene		nitsebenzene	\$
lonzidino	☆☆ 	N-nitrosodimethylamine	습요
1,2,4-trichlorobenzene	ND	N-nitrosodiphenylamina	<u></u>
hexachlorobenzene	ND	N-nitrosodi-n-propylamine	☆☆
hexachloroethane	\$	bis(2-ethylhexyl)phthalate	3.5
bis(2-chloroethyl)ether	\$	butyl benzyl phthalate	\$
2-chloronaphthalene	ND	di-n-butyl phtholote	ND
1,2-dichlorobenzens	ND	di-n-octyl phthalate	ND
1,3-Jichlorobenzene		dicthyl phthalate	ND
1,4-dichlorobenzene	ND	dimethyl phthalate	ND
3,3'-dichlorobenzidine	ជ 	benzo (a) anthracene	ND
2,4-dinitrotoluene	<u></u>	benzo (a) pyrene	û
2,6-dinitrotoluene	\$ 	benzo(b)fluoranthene ^l	\$
1,2-diphenylhydrazine	ND	benzo(k)fluoranthene ^l	\$
fluoranthene	ND	chrysene	ND
0-chlorophenyl phenyl ether	\$	Coenaph thy lens	ND
O-bromophenyl phenyl ether	¢	onthracene	ND
bis(2-chloroisopropyl)ether	\$	benzo (g.h.i.) perylene	\$
bis(2-chloroethoxy)methane	\$	fluorenz	ND
hexachlorobutadiene	\$	phanan the ena	ND
hexachlorocyclopentadiene	\$	dibenzo (a, h) anthreczne	<u></u>
isophorone	\$	Indeno(1,2,3-c,d)pyrene	\$
narththalone'		pyrene	ND
bis (chloromethyl) ether	**	2, 3, 7, 8-tetrochlorodibenzo-	

p-dioxin

00

 $^{\circ}$ ~ Less than 1 µg/1 $^{\circ}$ ~ Less than 10 µg/1 $^{\circ\circ}$ ~ Less than 25 µg/1

:

Lenzo (b) fluoranthene and benzo (k) fluoranthene could not be resolved, values reported indicate the sum of both compounds.

SLAMMARY OF ORCANIC PRIORITY POLLUTANT ANALYSIS

CLIDNT_West	Lake			
Client I.D	图1-25	(NPDES)	DATE SAMPLE RECEIVED	6 July 1981
rxc I.d	₿572		DATE ANALYSIS COMPLETED	24 July 1981

PESTICIDES

	ra(1		19/1
aldrin	ជំ 	8-8HC	\$
dieldrin	ND	b-Bi€	ND
Gilordana	<u>ND</u>	é-Bhc	û
0, 0'-DDT	ND	g-B:C	ND
4,4'-DDE	ND	PCB - 1242	<u>ND</u>
0,0'-DDD	ND	PCB - 1254	<u>ND</u>
endosulfan I	¢	PCB - 1221	<u>ND</u>
cnòosulfan II	\$ 	PCB - 1232	ND
endosulfan sulfate	ي	PCB - 1248	<u>ND</u>
Gndrin	\$	PCB - 1260	<u></u>
endrin aldehyde	\$	PCB - 1016	<u>ND</u>
heptechlor	ND	toxaphene	<u>ND</u>
heptechlor epoxide	ጵ		

NO - Less than 1 µg/1 ° - Less than 10 µg/1

5

•

÷

.

SLMMARY OF ORGANIC PRICRITY FOLLUTANT ANALYSIS

...

ł.

CLIENT We	st Lake		
CLIENT I.D	ጀዝ-25	(NPDES)	DATE SAMPLE RECEIVED 6 July 1981
R*C I.D	Ø 57 2		DATE ANALYSIS COMPLETED 5_August_1981

VOLATILES

	<u>ka/1</u>		<u>49/1</u>
acrolein	\$\$ 	l,2-dichloropropana	NO
æcrylonitrile	¢¢	l,3-dichloropropylens ^l	<u></u>
benzene	1.1	@thylbenzene	
carbon tetrachloride	\$	methylene chloride	<u>_ll.4</u>
chlorobenzene	ND	methyl chloride	\$
1,2-dichloroethane	5.4	methyl bromide	\$
l,l,l-trichlorcethane	ND	bromoform	ND
l,l-dichlorcethane	ND	dichlorobromome thane	ND
1,1,2-trichlorcethane	ND	trichlorofluoromethene	\$
1,1,2,2-tetrachloroethane	ND	dichlorodifluoromethane	\$
chlorcethane	¢	chlorodibromomethane	ND
2-chloroethylvinyl ether	ND	tetrachlorosthylens	48.4
chloroform	ND	toluzne	45.3
l,l-dichloroethylene	\$	trichloroethylene	<u></u>
1,2-trans-dichlorosthylene	23.1	vinyl chloride	☆

MD - Læss than 1 µg/kg ° - Læss than 10 µg/kg °° - Læss than 100 µg/kg

1], 3-cis-dichloropropylene and 1, 3-trans-dichloropropylene could not be resolved, values reported indicate the sum of both compounds.
SUMMARY OF ORGANIC PRIORITY POLLUTANT ANALYSIS

.

:

:

.

-

CLI DA	T West	t Lake						
CLIEN	r I.D	<u>BH-31</u>	(NPDES)	DATE	SAMPLE R	eceived	6 July 1981	
rmc I	•D	#573		<u>_</u> DNTS	ANALYSIS	COMPLETED_	16 July	1981

ACID COMPOUNDS

	<u>hd/J</u>
2,4,6-trichlorophanol	4 C
o-chloro-to-creeol	ND
2-chlorophanol	26.0
2,4-dichlorophenol	ND
2, 4-dimethylphenol	ND
2-nitrophenol	ND
4-nitrophenol	*
2,6-dinitrophonol	*
a, 6-dinitro-o-creeol	ND
pentachlorophenol	ND
phenol	2.6

ND - Less than 1 µg/1 ° - Less than 25 µg/1 ° - Less than 250 µg/1

SLAMANKY OF ORGANIC FRICRITY POLLUTANT ANALYSIS

2

ł.

.

CLIINT West	Lake		
CLIENT I.D.	BH-31	(NPDES)	DATE SAMPLE RECEIVED 6 July 1981
RAC I.D	¢573		DATA ANALYSIS COMPLETED 22 July 1981

٥

BASE MELTRAL OD POUNDS

	<u>vg/1</u>		Ma/J
acenaphthene	0#4	nitrobenzene	ND
benzidine	<u></u>	N-nitrosodimethylemine	<u>ជ</u> ំជ
1,2,4-trichlorobenzene		N-nitrosodiphenylamina	ជជ
hexachlor duenzene	ND	N-nitrosodi-n-propylamine	<u>ታ</u> ተ
hexachloroethane	ND	bis(2-ethylhexyl)phthalate	ن
bis(2-chlorcethyl)ether		butyl benzyl phthalate	16.2
2-chloronaphthalene		di-n-butyl phthalate	ND
1,2-dichlorobenzene	<u>ND</u>	di-n-octyl phthalate	1.4
1,3-dichlorobenzene	<u> </u>	diethyl phthalate	ND
1,4-dichlorobenzene		dimethyl phthalate	ND
3,3'-dichlorobenzidine	\$	benzo (a) anthracene	ND
2,4-dinitrotoluene	2 2	banzo (a) pyrene	ND
2,6-dinitrotoluene		benzo (b) fluoranthene	ND
1,2-diphenylhydrazine	ND	benzo(k)fluoranthene ¹	ND
fluoranthene		cycline	ND
4-chlorophenyl phenyl ether		coenaphthylene	ND
6-bromophenyl phenyl ether	0	anthracene	ND
bis(2-chloroisopropyl)ether		banzo (g.h.i.) parylena	<u>ن</u>
bis(2-chloroethoxy)methane	074	fluorene	MD
hexachlorobutadiene	ND	phenen threne	
hexachlorocyclopentadiene	\$	dibenzo (a,h)anthrecene	ជ
isophorone	ND	Indeno(1,2,3-c,d)pyrene	
najhthalene'	ND	pyrene	<u>MD</u>
brs(chloromethyl)ether	<u>\$</u> \$	2, 3, 7, 8-tetrachlorodibenzo-	-
	_	a dianta	ឋជ

ND - Less than $1 \mu g/1$ $^{\circ}$ - Less than $10 \mu g/1$ $^{\circ\circ}$ - Less than 25 $\mu g/1$

l Benzo(b) fluoranthene and benzo(k) fluoranthene could not be resolved, values reported indicate the sum of both compounds.

p-dioxin

simmary of organic priority pollutiant analysis

CLIENT West	Lake			
CLIENT I.D	BH-31	(NPDES)	DATE SAMPLE RECEIVED	6 July 1981
R-C I.D	#573		DATE ANALYSIS COMPLE	120 24 July 1981

PESTICIDES

	<u>hav</u>		<u>pg/1</u>
aldrin	ND	0-BHC	\$
dieldrin	ND	6-BHC	ND
chlordane	ND	g-Bhc	<u>8,5</u>
4,4'-DDT	ND	g-BHC	<u> </u>
4,4'-DDE	ND	PCB - 1242	ND
4,4'-DDD	ND	PCB - 1254	ND
endosulfan I	\$	PCB - 1221	ND
endosulfan II	\$	PCB - 1232	ND
endosulfan sulfate	*	PCB - 1248	<u>ND</u>
endrin	÷	PCB - 1260	ND
endrin aldehyde	\$ 	PCB - 1016	ND
heptachlor	ND	toxaphene	ID
heptschlor epoxide	\$		

MD = Less than 1 µg/1 $\circ = Less than 10 µg/1$

4

;

.

`.

.

SLIMMARY OF ORGANIC PRIORITY FOLLUTANT ANALYSIS

ł

CLIDNT	West Lake		-
CLIENT I.D.	EH-31	(NPDES)	DATE SAMPLE RECEIVED 6_July_1981
RXC I.D	¢573	<u></u>	DATE ANALYSIS COMPLETED 5 August 1981

VOLATILES

	<u>1/94</u>		<u>va/1</u>
æcrolein	₩ 2 2 2	1,2-dichloropropens	0
acrylonitrile	\$ \$\$	l,3-dichloropropylens ^l	\$
benzene	ND	ethylbenzene	30.4
carbon tetrachloride	\$	methylene chloride	1.4
chlorobenzene	9.6	methyl chloride	<u>ل</u>
1,2-dichlorcethane	4.2	methyl bromide	\$
l,l,l-trichloroethane	1.4	bromoform	ND
l,l-dichlorcethane	ND	dichlorobromomethane	ND
1,1,2-trichloroethane	ND	trichlorofluoromethene	2.6
1,1,2,2-tetrachloroethane	ND	dichlorodifluoromethane	\$
chlorcethane	\$	chlorodibromomethane	NU
2-chlorouthylvinyl ether	ND	tetrachloroethylene	19.3
chloroform	3.1	toluane	30.9
l,l-dichloroethylene	ND	trichloroethylene	
1,2-trans-dichloroethylene	40.2	vinul chloride	t

ND - Less than $1 \mu g/kg$ $^{\circ}$ - Less than 10 $\mu g/kg$ $^{\circ\circ}$ - Less than 100 $\mu g/kg$

 1], 3-cis-dichloropropylene and 1, 3-trans-dichloropropylene could not be resolved, values reported indicate the sum of both compounds.

SUMMARY OF ORGANIC PRIORITY POLLUTANT ANALYSIS

.

. 5

.

CLILMT	West Lake	
CLIENT I	.D. <u>BH-35</u>	DATE SAMPLE RECEIVED 6 July 1981
RXC I.D.	#574	DATE ANALYSIS COMPLETED 16 July 1981

ACTO COMPOUNDS

	<u>49/1</u>
2, 4, 6-trichlorophenol	*
o-chloro-m-cresol	ND
2-chlorophenol	1414.7
2, 4-dichlorophenol	ND
2,4-dimethylphenol	ND
2-nitrophenol	ND
(-nitrophenol	<i>tr</i>
2,4-dinitrophenol	\$ \$
4,6-dinitro-o-creeol	*
pentachlorophenol	*
phenol	159.0

NO - Less than 1 yg/1 ° - Less than 25 yg/1 °° - Less than 250 yg/1

SIDDANKY OF ORGANIC PRICHITY POLLUTANT ANALYSIS

CI.II West	: Lake	<u></u>	
CLIENT I.D	<u>इ</u> स-35	(NPDES)	DATE SAMPLE RECEIVED 6 July 1981
RAC I.D	\$57 4		DATA ANALYSIS COMPLETED 22 July 1981

BASE ANELTRAL COMPOUNDS

	<u>w1/1</u>		19/1
acenaphthene	ND	nitrobenzene	¢
tonzidine	쇼 <i>☆</i>	N-nitrocodimethylemine	\$\$
1,2,4-trichlorobenzene	ND	N-nitrosodiphenylemine	¢\$
hexachlorolænzene	ND	N-nitrosodi-n-propylamine	±
hexachloroethane	ND	bis(2-ethylhexyl)phthalate	\$\$
bis(2-chlorcethyl)ether	ND	butyl benzyl phthalate	18.6
2-chloronaphthalene	ND	di-n-butyl phthalate	\$
1,2-dichlorobenzene	ND	di-n-octyl phthalate	ND
1,3-3ichlorobenzene	ND	diethyl phthalate	<u> </u>
1,4-dichlordionzene	<u> </u>	dimethyl phthalate	<u>ND</u>
3,3'-dichlordenzidine	\$	benzo (a) anthracene	ND
2,4-dinitrotoluene	**	benzo(a)pyrene	<u>ND</u>
2,6-dinitrotoluene	1	benzo(b)fluoranthene	ND
1,2-diphenylhydrazine	ND	benzo(k)fluoranthene ^l	ND
fluoranthene	ND	<i>chrysens</i>	ND
4-chlorophenyl phenyl ether	<u>ND</u>	coenaphthylene	ND
4-bromophenyl phenyl ether	0	onthrocene	ND
bis(2-chloroisopropyl)ether	ND	benzo (g.h.i.) perylene	\$
bis(2-chlorcethoxy)methane		fluorenz	ND
hexachlorobutadiene	ND	phenon un ene	ND
hexachlorocyclopentadiene	\$	dibenzo (a,h)anthrecene	\$
isophorone	ND	Indeno(1,2,3-c,d)pyrene	ND
najhtlidene'	<u>3,A</u>	pyrene	ND
brs (chloromethyl)ether	\$\$	2,3,7,6-tetrachlorodibenzo-	
		p-dioxin	ជជ

AD - Less than $1 \mu g/1$ $^{\circ}$ - Less than $10 \mu g/1$ $^{\circ\circ}$ - Less than $25 \mu g/1$

Lenzo (b) fluoranthene and benzo (k) fluoranthene could not be resolved, values reported indicate the sum of both compounds.

SIMMARY OF OPGANIC PRIORITY POLLUTANT ANALYSIS

CLIENT West	Lake		D	
CLIENT I.D.	BH-35	(NPDES)	_DATE SAMPLE RECEIVED_	6 July 1981
R%C I.D	#574		DATE ANALYSIS COMPLET	24 July 1981

PESTICIDES

	ha/J		<u>nd/J</u>
əldrin	#	a−BHC	ND
dieldrin	ND	b-BHC	ND
chlordane	940	d-BHC	\$
4,4'-DDT	ND	g-BKC	ND
4,4'-DDE	ND	PCB - 1242	ND
4,4'-DDD	<u>ND</u>	PCB - 1254	ND
endosulfan I	\$	PCB - 1221	ND
endosulfan II	\$	PCB - 1232	ND
endosulfan sulfate	*	PCB - 1248	ND
endrin	*	PCB - 1260	ND
endrin aldehyde	\$	PCB - 1016	ND
heptachlor	ND	toxaphene	ND
heptschlor epoxide	\$		

NO - Less than 1 µg/1 * - Less than 10 µg/1

;

•

.

SLMWARY OF ORGANIC PRIORITY FOLLUTANT ANALYSIS

.

ŗ

CLIDNT Wes	st Lake						
CLIEVT I.D	BH-35	<u>DATE</u>	Sayple	RECEIVED	6 N	1981 1981	1
₩C I.D	Ø574	DATE	ARALYS	IS COMPLETED	<u> 5 </u>	August	1981

VOLATILES

	<u>vq/1</u>		<u>navi</u>
ærolein	**	1,2-dichloropropans	<u>ND</u>
acrylonitrile	☆☆	l,3-dichloropropylens ^l	\$
benzene	15.7	ethylbenzene	
carbon tetrachloride	22.4	methylene chloride	26.4
chlorabenzene	ND	methyl chloride	\$
1,2-dichlorcethane	81.6	methyl bromide	57.6
1,1,1-trichloroethane	ND	bromoform	ND
1,1-dichloroethane	18.4	dichlorobromomethane	ND
1,1,2-trichloroethane	ND	trichlorofluoromethane	147.9
1,1,2,2-tetrachloroethane	ND	dichlorodifluoromethane	\$
chlorcethane	1	chlorodibromomethane	ND
2-chloroethylvinyl ether	\$	tetrachloroethylene	45.3
chloroform	25.1	tolurne	277.1
l, l-dichloroethylene	5.2	trichloroethylens	724.9
1,2-trans-dichlorosthylene	7.7	vinvl chloride	

ND - Less than 1 µg/kg ° - Less than 10 µg/kg

 $\dot{v}\dot{v}$ - Less than 100 yg/kg

1,3-cis-dichloropropylene and 1,3-trans-dichloropropylene could not be resolved, values reported indicate the sum of both compounds.

Chemical Analysis of Radioactive Material From Areas 1 and 2

Table 13

•

,

.

Concentration in ppm

.

	Offsite Bkg Sample	Area l Surface (#101)	Area l Surface (#102)	Area 1 Borehole (#103)	Area 2 Surface (#104)	Area 2 Surface (#105)
Barium	250	300	1811	2386	1158	1197
Lead	16	15	108	121	11	50
Zinc	132	146	94	76	28	167
Sulfate	20	15	108	121	11	50

Summary of Background Measurements in the Vicinity of West Lake Landfill, St. Louis County Missouri

Table 14

Sample Type	Earth City	Background Taussig Road	Location Old St. Charles Rock Road
Flux (Av)(pCi/m2.s)	0.50 +/- 54%	0.58 +/- 27%	0.50 +/- 30%
Exposure Rate (uR/hr)	10.6	8.0	
Soil Conc. (Ra-226 pCi/gm)	2.6 +/- 23%	2.5 +/- 19%	
HVAS (W.L.)	1.1E-3	5 E 3	1 .7E-3

110

· ·

Target Criteria and Measurements LLDs for West Lake Landfill

Table 15

1

÷

Soil Contaminants

!

Nuclide	Target Criteria	LLD
Ra-226	5pCi/g	lpCi/g
Total U	15pCi/g	3pCi/g
U-238	30pCi/g	6pCi/g
U-235	30pCi/g	6pCi/g
Th-232	5pCi/g	lpCi/g
Th-230	15pCi/g	3pCi/g

Water and Airborne Contaminants

Nuclide	Target Criteria	LLD
All	MPC Unrestricted	20% MPC
Radon Daughters	0.03 W.L.	0.006 W.L.
Ra-226 (water)	3E-8 uCi/ml	6E-9 uCi/ml

External Radiation

Nuclide	Target Criteria	LLD
A11	20 uR/hr	4 uR/hr

APPENDIX I

Radiological Survey Instruments and Methods

ţ

. 1

•

A. Portable Survey Instrument

The portable survey instruments used at West Lake included two complete sets of Johnson equipment, which consist of battery operated rate meters, scalers and alpha, beta and gamma probes. These systems (see Figure I-1) are totally portable and can be used in the field for both measurements and sample counting.

The alpha probes use a ZnS (Ag) scintillation detector; the beta detector is a thin window (l.4mg/cm2 mica) GM tube, and the gamma detector is a 2" by 2" NaI(Tl) crystal. The alpha and beta probes were calibrated with "NBS traceable" sources at the RMC calibration facility in Philadelphia and the gamma scintillator was cross-calibrated with a primary ionization chamber system, described below.

B. Ionization Chamber System

External gamma dose rates were accurately measured with the RMC constructed Tissue Equivalent Ionization Chamber System (Figure I-2). This system consisted of a 16 liter tissue equivalent, gas filled ionization chamber (Shonka chamber), a Keithley vibrating capacitor electrometer, a printer and battery pack. It is capable of measuring dose rates at background levels to a precision of a few percent.

Since this system is bulky and somewhat fragile, it is not as suited for extensive field measurements as a smaller, lightweight NaI(Tl) portable survey instrument. Therefore,

the NaI(T1) detector was used for the majority of the field gamma measurements. Since this detector's response is energy dependent, it cannot be used as a "micro R meter" unless it is initially calibrated for such use.

RMC The calibration performed by consisted of accurately measuring the exposure rate at several locations at West Lake Landfill, using the Tissue Equivalent Ionization Chamber, then recording NaI(T1) measurements at same location. In this manner a set of the Nal(Tl) count-rate versus exposure rates were obtained and a uR/hr calibration factor established, as shown in Figure I-3.

Due to the energy dependence of the NaI detector, this conversion factor will apply only to the radionuclides and geometries for which the calibrations were made. In the case of West Lake, analyses have verified the presence only of naturally occurring nuclides of the uranium series (Ra-226 and daughters), thorium series and potassium. Therefore, the conversion factor established at West Lake will apply only to naturally occurring radionuclides distributed in soil.

C. Mobile Lab Gamma Analysis System

The mobile lab gamma analysis system (Figure I-4) consists of a PGT 15% efficient (relative to a 3" x 3" NaI(Tl) crystal) intrinsic germanium (IG) detector, shield and Tennecomp TP-50 laboratory computer data acquisition

module. The analysis system was calibrated for all counting geometries with an NBS supplied Eu-152 source.

Each count was analyzed by a computer program for determination of gamma energies and peak areas. All results were printed out immediately following analysis on-site, and data was stored on floppy discs for future analysis, as needed.

Samples were sealed in counting containers and stored to allow for complete ingrowth of radon and daughters, whenever possible. In these cases, Ra-226 was determined by counting the daughter Bi-214 gamma-ray lines at 609 and 1764 KeV. Pb-214 was determined by the 295 and 352 KeV lines, U-238 from its 93 KeV line, Ra-223 from its 270 KeV line, Rn-219 from its 401 KeV line, Pb-211 from its 405 and 832 KeV lines, Th-227 from its 237 KeV line and K-40 from its 1462 KeV line.

Typical LLDs for Ra-226 were 0.1 pCi/g in soil and vegetation, and 0.4 pCi/l in water. For Rn-219 daughters on air filters, LLDs were 0.4 pCi/l. The LLD for U-238 in soil was on the order of 1 pCi/g.

D. Auger Hole Logging System

1

:

Detailed logging of selected auger holes was performed with the system shown in Figure I-5. This system consists of a custom designed EG&G Ortec intrinsic germanium detector (10% eff) with a narrow dewar, coupled to a Tracor-Northern

1750 MCA used for data acquisition and initial field evaluations. Data was stored on a tape cassette recorder, then transferred to the lab computer system for final analysis. The entire system, including an NIM module power supply with a bias power supply and amplifier, was powered in the field by a portable 5000 watt gasoline-driven generator. ;

The logging system was calibrated as described in Attachment 1. Field counting times varied from 2 minutes to 10 minutes at each location, depending upon the level of activity present. Typical LLDs for this system and relatively short count times are 0.3 pCi/g for Bi-214, 1 pCi/g for U-238, 0.2 pCi/g for Pb-212 and 0.1 pCi/g for K-40.

The field use of this system was somewhat limited by initial failure due to high humidity effects on the pre-amp components and thermal insulation of the detector housing. These problems were partially corrected by sealing the detector in an outer container and allowing dry air to flow through the container.

E. Radon Analysis Systems

Radon flux was determined using the accumulator system shown in Figure I-6, which is similar to those used by Wilkening [1] and others. Accumulation times varied from 15 minutes to 2 hours. Gas samples were drawn and counted in

the EDA Radon Detector, usually 2 hours after sampling, to allow for daughter ingrowth. Standard MSA charcoal canisters were used for the canister method, as described by Countess [2].

F. Alpha-Beta Counting System.

1

ľ.

All samples were counted for gross alpha or beta activity on the Gamma Products low background gas flow proportional counter, shown in Figure I-7. The system is automatic and can be programmed for a variety of counting parameters.

REFERENCES

- [1] M. Wilkening, "Measurement of Radon Flux by the Accumulation Method", Workshops on Methods for Measuring Radiation in and Around Uranium Mills, 3, 9, 1977, pp. 131-137.
- [2] R. J. Countess, "Measurements of Rn-222 Flux with Charcoal Canisters" ibid. pp. 139-147.

Figure I-1. Portable Survey Instrument Kit.

Figure I-2. High sensitivity tissue equivalent ionization chamber system.

KOE LOGARITHMIC . 2 X 3 CYCLES KEUFFEL & ESSER CO. MADE IN USA

Figure I-4. Interior of mobile lab showing gamma counting system and other equipment.

Figure I-5. In-situ auger hole logging system with intrinsic germanium detector and narrow dewar assembly, data acquisition equipment and storage/ fill dewar.

Figure I-6. Radon sampling cells, pump, and gas analyzer, sitting atop a radon accumulator tub.

٢.

ATTACHMENT 1 TO APPENDIX I

t

INTRINSIC GERMANIUM WELL LOG DETECTOR CALIBRATION

. . L

٤

The intrinsic germanium detector was connected to the pulse height analysis system consisting of the following components:

Ortec Model 459 High Voltage Power Supply Canberra 2011 Spectroscopy Amplifier Tracor Northern 1750 MCA Teletype Model 43 Printer

Gain and voltage supply settings were adjusted to obtain an energy spectrum of 0 to 2000 kev, which corresponds to approximately 1 kev per channel.

Calibration of the well logging system was performed using the calibration rig shown in Figure 1. This rig is constructed as a series of four concentric rings surrounding a 6 inch PVC casing. Each ring contains thin plastic tubes 1-1/4" diameter by 36" long. A set of "source rods" and "background rods" were prepared and loaded into these tubes in a variety of configurations for the various calibration and test counts.

The geometry of the rig is such that the distance from the center of the casing (or detector) to the center of the innermost ring is 3.75 inches, to the center of the second ring is 5.0 inches, to the center of the third ring is 6.25

inches, and to the center of the fourth ring is 7.50 inches. All voids between tubes were filled with low background sand. It was determined that the ratio of source volume in each ring to the total ring area was about 0.6. Hence, when source rods were fully loaded into a given ring, the activity counted represented approximately 60% of the total area (volume) the detector viewed, and counts were adjusted accordingly. 3

Each source tube is a 12 inch high by 1 inch diameter tube filled with a material containing Eu-152. The source material was prepared by mixing the standard Eu-152 source solution with plaster of paris, at a constant ratio designed to give a uniform specific activity of 440 pCi/gram. Background rods were filled with "clean" plaster of paris. Plaster of paris was chosen because of its ease of handling, ability to uniformly distribute the source throughout the material, and its density, which approximates that of common soil. (Density of soil, 1.7-2.3 g/cubic cm; density of plaster, 1.5 g/cubic cm; density of sand, 1.4 g/cubic cm)

Four different configurations of source and blank tubes were used for the calibration. Source tubes were placed three high in one of the four concentric rings of the rig for each count while the balance of the rig was filled with blanks. These configurations correspond to the source material being a radial distance of 3.75, 5.00, 6.25 and 7.50 inches from the detector.

Each Configuration was counted for 900 seconds, and the area under each of the eight major Eu-152 photopeaks determined for each count.

ί.

t

Calculation of counts per gamma per gram was determined by the following method:

NCNTS/GAMMA/GRAM =

[NCNTS]/[(440pCi/g)(3.7E-2d/s/pCi)(900s)(ABUNDANCEgamma/d)]

For each gamma energy, the net counts/gamma/gram vs distance from the center of the detector was listed. These response curves were then plotted for each energy, for distances and activities which extend to zero net counts. This represents an "infinite" distance from the detector. Using these curves, the total counts from the detector to an infinite distance was calculated by integrating the area under the curve using Simpson's rule for approximating integrals. Of prime importance is the integral from 2 inches to infinity, since this is the area the detector will view when placed inside a 4 inch PVC casing.

Finally, the integrated net count/gamma/gram, from 2 inches to infinity, was plotted vs energy, for each of the Eu-152 photons. With this efficiency curve, a specific activity in soil (pCi/gram) can be determined from a bore hole count, assuming the radionuclide can be identified and its gamma abundance determined. The calculation is:

SPECIFIC ACTIVITYpCi/gm(in soil) = [NETCOUNTS]/[(ABUNDANCEgamma/dis)(2.22 dis/min/pCi) (MINUTES COUNTED)(EFFICIENCYcounts/gamma/gm)]

s

ō

This determination will be valid so long as the radioactive material is uniformly distributed to an "infinite" distance in soil, and the detector is in a 4 inch PVC (or similar material) casing. Although soil should be at the surface of the casing, the data indicates that small voids will not produce significant errors in activity estimations.

Results of this calibration indicate that an "infinite" thickness in soil for a bore hole logging device is about 10 inches from the center of the detector. Thus, for a 4 inch hole, gamma logging will only "see" activity out to about 7 or 8 inches from the hole. For low energies (100-500 kev), 50 to 60% of the total activity seen is in the interval of 2 to 4 inches. For energies above 500 Kev, this value is 40 to 50%. While this volume may not seem large, it represents several thousand (2000 to 4000) grams of soil, which is much larger than typical core samples, and is therefore more representative of the actual soil activity.

This calibration indicates that the sensitivity of the IG well logging system is such that the Ra-226 daughter Bi-214, as measured by the 47% abundant 609 KeV peak, can be easily detected at 1 pCi/gram in soil, in a five minute

count, with a 95% confidence level and precision of 0.4

-

.

-

•

2

4.

;

Figure 1

CALIBRATION RIG ASSEMBLY

- "A" 6" I.D. PVC Pipe
- "B" 1.25" diameter x 36" long
 butyrate source holder tubes

٥

"C" - 1" diameter x 12" long source tubes. 3 per holder tube

"D" - IG Detector

Cross Section

Top View

NRC FORM 335	U.S. NUCLEAR REGULATORY COMMISSION		1. REPORT NUMEER (Assigned by I	DDC)
111.611	BIBLIOGRAPHIC DATA SHEET		NUREG/CR-2722	
4. TITLE AND SUBTI	ITLE (Add Volume No., if appropriate)		2. (Leave biank)	
Radiological St. Louis Co	l Survey of the West Lake Landfill ounty, Missouri		3. RECIPIENT'S ACCESSION NO.	
7. AUTHOR(S)			5. DATE REPORT COMPLETED	
L.F. Booth,	D.W. Groff, G.S. McDowell, J.J. Ad P.L. Nverges, F.L. Bronson	ter,	MONTH YEAF April 19	82
9. PERFORMING OF	RGANIZATION NAME AND MAILING ADDRESS (Include	Zip Codel	DATE REPORT ISSUED	
Rad	diation Management Corporation		MONTH YEAF	
335	56 Commercial Avenue		May 19	82
Not	rthbrook, IL 60062			
			8. (Leave blank)	
12. SPONSORING OF Div Of:	RGANIZATION NAME AND MAILING ADDRESS (Include vision of Fuel Cycle and Material S fice of Nuclear Material Safety and	<i>z_{ip} code)</i> afety Safeguards	10. PROJECT/TASK/WORK UNIT N	0.
U. Was	S. Nuclear Regulatory Commission shington, D. C. 20555		11. FIN NO. B6901	
13. TYPE OF REPOR	RT	PERIOD COVERE	D (Inclusive dates)	
Fir	nal Report	April 1981	- February 1982	
15 SLIPPI ENTENITAD	RY NOTES		14 (Leave plank)	
16. ABSTRACT (200 This report St. Louis Co spring and s levels, cond of subsurfad	words or less) presents the results of a radiolog ounty, Missouri, performed by Radia summer of 1981. Measurements were centrations of airborne contaminant ce deposits. Results indicate that	ical survey tion Managem made to dete s and the id large volum	of the West Lake Landf ent Corporation during rmine external radiati entity and concentrati es of uranium ore resi	ill, the on ons dues,
16. ABSTRACT (200 This report St. Louis Co spring and s levels, cond of subsurfac probably or: at the West and located There is no at this time	words or less) presents the results of a radiolog ounty, Missouri, performed by Radia summer of 1981. Measurements were centrations of airborne contaminant ce deposits. Results indicate that iginating from the Hazelwood, Misso Lake Landfill. Two areas of conta at depths of up to 20 feet below t indication that significant quanti e.	ical survey tion Managem made to dete s and the id large volum uri, Latty A mination, co he present s ties of cont	of the West Lake Landf ent Corporation during mine external radiati entity and concentrati es of uranium ore resi venue site, have been vering more than 15 ac urface, have been iden aminants are moving of	ill, the on ons dues, buried res tified f-site
 16. ABSTRACT (200 This report St. Louis Co spring and s levels, cond of subsurfac probably or: at the West and located There is no at this time 17 KEY WORDS AN 	words or less) presents the results of a radiolog ounty, Missouri, performed by Radia summer of 1981. Measurements were centrations of airborne contaminant ce deposits. Results indicate that iginating from the Hazelwood, Misso Lake Landfill. Two areas of conta at depths of up to 20 feet below t indication that significant quanti e.	ical survey tion Managem made to dete s and the id large volum uri, Latty A mination, co he present s ties of cont	of the West Lake Landf ent Corporation during mmine external radiati entity and concentrati es of uranium ore resi venue site, have been vering more than 15 ac urface, have been iden aminants are moving of	ill, the on ons dues, buriec res tifiec f-site
16. ABSTRACT (200 This report St. Louis Co spring and s levels, cond of subsurfac probably or: at the West and located There is no at this time	Words or less) presents the results of a radiolog ounty, Missouri, performed by Radia summer of 1981. Measurements were centrations of airborne contaminant ce deposits. Results indicate that iginating from the Hazelwood, Misso Lake Landfill. Two areas of conta at depths of up to 20 feet below t indication that significant quanti e. ND DOCUMENT ANALYSIS DPEN-ENDED TERMS	ical survey tion Managem made to dete s and the id large volum uri, Latty A mination, co he present s ties of cont	of the West Lake Landf ent Corporation during mine external radiati entity and concentrati es of uranium ore resi venue site, have been vering more than 15 ac urface, have been iden aminants are moving of	ill, the on ons dues, buried res tified f-site
16. ABSTRACT (200 This report St. Louis Co spring and s levels, cond of subsurfac probably or: at the West and located There is no at this time 17 KEY WORDS AN	words or ressi presents the results of a radiolog ounty, Missouri, performed by Radia summer of 1981. Measurements were centrations of airborne contaminant ce deposits. Results indicate that iginating from the Hazelwood, Misso Lake Landfill. Two areas of conta at depths of up to 20 feet below t indication that significant quanti e.	ical survey tion Managem made to dete s and the id large volum uri, Latty A mination, co he present s ties of cont	of the West Lake Landf ent Corporation during mine external radiati entity and concentrati es of uranium ore resi venue site, have been vering more than 15 ac urface, have been iden aminants are moving of	ill, the on ons dues, buried res tified f-site
 16. ABSTRACT (200 This report St. Louis Co spring and s levels, cond of subsurfad probably ori at the West and located There is no at this time 17 KEY WORDS AN 17 KEY WORDS AN 	Presents the results of a radiolog ounty, Missouri, performed by Radia summer of 1981. Measurements were centrations of airborne contaminant ce deposits. Results indicate that iginating from the Hazelwood, Misso Lake Landfill. Two areas of conta at depths of up to 20 feet below t indication that significant quanti e.	ical survey tion Managem made to dete s and the id large volum uri, Latty A mination, co he present s ties of cont	of the West Lake Landf ent Corporation during mine external radiati entity and concentrati es of uranium ore resi venue site, have been vering more than 15 ac urface, have been iden aminants are moving of	ill, the on ons dues, buried res tified f-site

4

۰. •

UNITED STATES

OFFICIAL BUSINESS PENALTY POR PRIVATE USE, \$300

1

POSTAGE AND FEES PAID U.S. NUCLEAR REGULATORY COMMISSION