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We review Anderson’s seminal paper “Absence of Localization in Certain Random Lattices”,
which presents the theory of Anderson localization. On a lattice of non-interacting atoms in three
dimensions with disorder scale W and hopping scale V , Anderson finds a critical hopping Vc below
which states become completely localized. This occurs as long as the couplings fall off spatially faster
than V (r) ∼ r−3. We also briefly review some of the progress and further work since Anderson’s
paper, mainly following Elihu Abrahams’ book 50 Years of Anderson Localization.
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I. INTRODUCTION

Consider a system of non-interacting atoms, living on
a lattice, with a single-particle Hamiltonian given by

Hij =
∑
k

Ekδjkδij + Vij . (1)

At each lattice site i is an onsite an energy Ei, and
between each pair of sites is a hopping term Vij . Now say
we start with a wavefunction localized near some lattice
site. Will it remain there at late times, or will it tend to
spread out to other sites?

The latter process is called diffusion, and it has many
important implications. A lack of diffusion implies a lack
of transport in the system. Such a lack of transport leads
to many phenomena, such as metal-insulator transitions
and even quantum Hall plateaus1. Diffusion is also im-
portant for thermalization. If an atom remains localized
for all times, the system cannot explore all of phase space,
and the ergodic hypothesis cannot be satisfied.

So far, we have not discussed the form of the onsite en-
ergies and hopping terms in (1). It is easy to see, however,
that if we require these terms to be translationally invari-
ant, then the system will diffuse with even the smallest
Vij . This is because localized states are extremely spread
out in the momentum basis.

In order for diffusion not to occur, translational in-
variance must be broken. Philip Anderson’s 1958 pa-
per, “Absence of Diffusion in Certain Random Lattices,”
discusses one of the most important examples of this:
quenched randomness1,2. Anderson looks at Hamiltonian
(1) on a 3-dimensional lattice, with random onsite ener-
gies falling inside a range [−W,W ]. The central question
of the work is this: how does tuning the ratio of disorder
strength to coupling, W/Vij , affect diffusion?

To answer this question, Anderson studies several dif-
ferent kinds of coupling Vij . He finds that if V falls off

with distance r more slowly than 1/r3, then diffusion oc-
curs no matter the strength of the disorder. However, if
the coupling falls off more quickly, then there is a sharp
phase transition: if V < V0 (for a given W ), no diffusion
occurs at all. This V0 cannot be calculated exactly; how-
ever, Anderson and others have estimated it numerically
for various forms of the coupling.

In this review, we will work through some of the main
features of Anderson’s paper. We will not present the full
derivation, which is quite involved. Instead, we will high-
light some of the important insights made by Anderson
that first allowed for a detailed understanding of local-
ization. We will also not burden ourselves considerably
with some of the mathematical difficulties noted in An-
derson’s original work. Rather, we hope the reader will
be satisfied by the extensive numerical and experimen-
tal evidence for the theory. Finally, we will also discuss
a fraction of some of the work done since 1958, which
has built greatly upon Anderson’s original contributions.
This last review is mainly based off of Elihu Abrahams’
book 50 Years of Anderson Localization1, as well as a
review of many body localization due to Abanin et al.3

II. METHODOLOGY

In order to understand diffusion, we must first precisely
quantify it. Let us label the wavefunction on each site
i as ai Now consider a particle starting with |a0| = 1,
ai = 0, for all i 6= 0. Then we say that such a state
diffuses if, in the infinite-size limit, as t→∞, |a0| → 0.

This can be conveniently studied with the Laplace
transform, given by

fj(s) =

∫ ∞
0

dte−staj(t). (2)

The Hamiltonian (1) will have several exact energies
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Ẽk. Then the amplitude of the eigenstate with energy
Ẽm on site i is given by

|ai|Ẽm
= lim
σ→0

σfi(σ − iẼm). (3)

Now say the state starting at 0 is localized. Since these
amplitudes are conserved in time, there should be some
energy Ẽ such that |a0|Ẽ is nonvanishing in the infinite
system size limit. If the state diffuses, on the other hand,
none of the eigenstates can have finite amplitude on 0.

To understand whether (3) vanishes, we will rely on
perturbation theory in the coupling Vij . Just as eigenval-
ues may be expanded perturbatively, the Laplace trans-
form may be written

f0(s) =
i

is− E0
+

1

is− E0

∑
k

V0k×(
Vk0

is− Ek
+
∑
l

1

is− Ek
Vkl

1

is− El
Vl0 + ...

)
f0(s)

≡ i

is− E0
+

1

is− E0
Vc(0)f0(s).

(4)

Vc(0) is the central quantity that Anderson studies. To
see its importance, we will substitute (4) into (3), giving

|a0|Ẽ = lim
σ→0

σ

σ + iE0 − iẼ + iVc(0)
. (5)

Now, say we are probing one of the exact eigenenergies
Ẽ. Then since the amplitude is real, the imaginary parts
of the denominator of (5) must cancel, leaving

|a0|Ẽ = lim
σ→0

σ

σ −=(Vc(0))
. (6)

Then the condition for Anderson localization to occur
is that =(Vc(0))→ 0 as σ → 0.

III. RESULTS

We next to turn to the key results of Anderson’s pa-
per, but now using the language of perturbation theory.
Anderson splits the perturbation series for Vc(0) (4) into
two parts: the lowest order term and all higher terms.
While all terms must be examined to assess convergence,
the convergence of the first term alone can impose a nec-
essary, though not sufficient, condition. The advantage
of this treatment is that the derivation of this condition
is much simpler without an infinite series. It will also
illuminate some of the critical behavior of the model.

In both parts, Anderson studies Vc(0) as a random
variable over ensembles of Ek. The goal will be to find
results that are true in all but a vanishing set of ensem-
bles, which become increasingly unlikely in the infinite
system size limit. In order to do this, we will need the
probability distribution of Vc(0).

A. Lowest Order Term

The lowest order term of =(Vc(0)) is given by

=(Vc(0)) = −s
∑
k

|V0k|2

s2 + E2
k

+ ... ≡ −sX(s). (7)

The quantity X(s) can be easily shown in the pertur-
bation theory (4) to be

X(s) =
∑
j 6=0

|fj(s)|2

|f0(s)|2
, (8)

to lowest order. From (3), this implies that if X(s) is
finite, there is no transport.

Anderson estimates the probability distribution P (x)
for coupling that scales as V0k ∼ 1/rq, where r is the
distance of site k to site 0. The sites are taken to be
randomly distributed in space. The on-site energies Ek
are assumed to lie in a uniform distribution between −W
and W .

Two regimes are relevant. In the first, V falls off faster
than r−3. In this case, the s → 0 limit of X(s) may be
taken, and the result is that for large X,

P (X) ∼ 1

X3/2
. (9)

The reader might notice that the average of this func-
tion diverges. This does not change the fact, however,
that we can make the cumulative probability distribu-
tion arbitrarily close to 1 for finite values of X. This
means if we draw a random X from the distribution, the
probability of it diverging is 0. To first order, at least,
this means that the state is localized at all times, though
perhaps spread out over some finite volume.

On the other hand, if V falls of slower than r−3, P (X)
itself diverges as s → 0. In this case, regardless of the
disorder strength W , diffusion occurs.

At the interface between these two regimes is V (r) =
Ar−3, for some constant A. Such functional form is ex-
perimentally relevant, corresponding to dipole interac-
tions. Here, Anderson finds that the most probable value
of X scales as

XMP ∼
[
sinh−1

(
W

2s

)]2
. (10)
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As s → 0, this scales as log(s)2. This means that in
the critical regime, there is still a tendency to diffuse,
albeit slowly.

To briefly summarize, the first term of =(Vc(0)) always
converges, as long as V (r) falls off faster than r−3. At the
moment, this is only a restriction on the functional form
of the couplings, and not the strength of the disorder W .
In order to understand the latter, we will need to move
to higher order terms.

B. Higher Order Terms

The rest of the series is given by

Vc(0) =
∑
k,l

1

is− Ek
Vkl

1

is− El
Vl0+

∑
k,l,m

1

is− Ek
Vkl

1

is− El
Vlm

1

is− Em
Vm0 + ...

(11)

As is standard in perturbation theory, we can view this
graphically as a series of hops between sites (Figure 1).
The series we are interested in now is a sum over all paths
of two or more hops.

Unfortunately, the terms in (11) do not all get smaller
as we go to more and more hoppings. The reason is
that, however unlikely, there may be some specific loop-
ing path with a very large amplitude. This path may be
repeated endlessly, and as a result, we need to account
for its contribution with higher and higher order terms.
Such a path is depicted (path A) in figure 1.

In order to resolve this, Anderson resorts to a common
technique in perturbation theory: resummation. The
goal is to rewrite a series of a similar form to (11), but
without repeating any sites. For example, a term in this
sum may look like

∑
k 6=0
l 6=0,k

m 6=0,k,l...

1

ek
Vkl

1

el
Vlm

1

em
Vm0... (12)

Graphically, such a term would resemble path B in fig-
ure 1. It turns out that such a resummation may be done,
but with a modification of the denominators ek. If we
think of the denominator as a propagator, this is anal-
ogous to a mass type renormalization, where the loops
correspond to one-particle irreducible diagrams. This
renormalization takes the form,

ek = is− Ek − V 0,l,m,...
c (j), (13)

Where V 0,l,m,...
c (j) is defined as before, except exclud-

ing any hopping to sites 0, l,m, ..., the sites to the right
of this term in (12). This renormalization is the sum
of all processes that start and end on site j, except for

FIG. 1: Possible paths. In the path A, the same loop is
repeated multiple times. In path B, there are no repeated
lattice sites.2

those including sites that have already occurred in pre-
vious terms in the product.

This is still not obviously convergent, although it is
clear that we can no longer sum over paths like path
A. Indeed, (12) is still a random variable, and in general
has a possibility of being quite large. However, Anderson
shows that as we increase the number of hops in series
of this form, the probability of very large contributions
decreases exponentially.

This can be shown in two coupling regimes. The first
is a “constant connectivity” system where each site is
coupled only to its K-nearest neighbors, with a constant
coupling V . Here, the probability distribution of terms
such as (12) is reduced to only studying the distribution
of the ek’s, as well as the average number of paths of a
given length, which may be estimated with graph theory.

The second regime is more physical: V (r) ∼ r−3N ,
with N > 1. This case, however, must be estimated
with further approximations. In particular, Anderson as-
sumes V (r) to be randomly distributed, even though the
restriction on nonrepeating paths from (12) introduces
correlations between r’s. However, it can be shown that
this approximation is a strict overestimate. The second
approximation is to introduce a minimum distance a be-
tween atoms. While this is an underestimate, it is rea-
sonable to expect this feature in physical systems as well.

Both regimes are studied with the number distribution
n(T ), where n(T )dT represents the number of terms with
L hops with magnitude between T and T + dT . In each
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case, Anderson finds

n(T )dT = F (W/V )L
dT

T 2
L(T ), (14)

Where F is some function of the Hamiltonian param-
eters, and L(T ) varies slowly with T (at large T ). Ad-
ditionally, F decreases with large W/V . What does (14)
mean? Say there is a critical value V0, where

F (W/Vc)
LL(1) = 1. (15)

Now, say we decrease V0 just slightly below this criti-
cal value. Then at large T , the number density at values
greater than T = 1 is now decreasing as e−L. In fact, we
can do better: the number density above some thresh-
old, n(T > (Ce)−L) falls off exponentially. This means
that as L gets larger, the terms are, except with vanish-
ing probability, constrained within a smaller and smaller
window. The interpretation, of course, is that as we av-
erage over more and more paths, small variations in the
disorder become more and more insignificant.

At this point, we have only considered the number den-
sity for single terms with L hops. However, in our actual
series for Vc(0), we will have many terms at each path
length (infinitely many, in the case of power law V (r).
Let Σ(L) be the sum of all terms with L hops. A result
from the theory of the Holtsmark distribution4 is that
the probability distribution of the sum of many terms of
different signs (with some restrictions on smoothness) is
the same as the probability distribution on the largest
term. Now, since the number of terms above e−L are
decreasing as e−L, the probability of Σ(L) being order
larger than e−L is of order e−L.

This means that, with all but vanishing probability,
the series (12) will converge in both the case of power law
(falling faster than r−3) and nearest neighbor couplings,
as long as V is smaller than some critical value V0.

As we saw in section A, this critical V has some of the
character of a phase transition. In the infinite size limit,
below it, almost every state is localized, but above it, al-
most every state is delocalized. Estimating this param-
eter, however, is difficult, because the functions F and
L are not known exactly. Anderson’s analytical results
should be seen mainly as a way to show the existence of
a localized regime, not as an exact prediction.

Still, Anderson does make numerical calculations to
find the value of V0. These numerics are done by itera-
tively solving (15) for the case of nearest neighbor inter-
actions. The results are in figure 2. Anderson finds that
as connectivity K increases, the critical ratio of W/V
increases as K log(K). This general increase can be ex-
pected, as increasing the number of nearest neighbors
increases the interactions felt by any given site.

FIG. 2: Numerical estimates of the critical ratio V/W versus
connectivity K, for nearest-neighbor type couplings.2

IV. CONCLUSIONS AND FURTHER WORK

In “Absence of Diffusion”, Anderson shows that the
quantity =(Vc(0)) (4) converges, which in turn implies
localization. This is true probabilistically, meaning that
while an average state is localized, it may still be possible
that some vanishing fraction of states are extended.

There are two requirements for this convergence to oc-
cur. First, the coupling V (r) must fall off faster than
r−3, and second, V/W must be less than some critical
value. At this critical value, there is a sharp transition
between localization and diffusion.

These are already strong, testable predictions, but
since 1958, when Anderson published his seminal work,
our understanding of this problem has increased signif-
icantly. First, Anderson himself, along with Abrahams,
Licciardello, and Ramakrishnan, studied the problem in
dimensions other than three, in 19795. They found that
in one and two dimensions, any amount of disorder causes
localization, and there is no critical value V0.

Second, in the intervening decades, numerics have im-
proved dramatically. Anderson localization has been
extensively confirmed in simulations, for example by
Yoshino and Ozaki for the two-dimensional case6, or
MacKinnon and Kramer in two and three dimension7.
Such simulations have also allowed for increasingly pre-
cise estimates of the critical exponents near the localiza-
tion transition, as well as the critical coupling.

Finally, Anderson localization has been experimentally
demonstrated. Indeed, one of the original motivations of
Anderson’s paper was an experiment by G. Feher find-
ing a lack of spin diffusion in silicon8. The Hamiltonian
(1) is rather general, however, and Anderson localiza-
tion has been found in many systems, from Bose-Einstein
condensates9 to photonic crystals10.

When Anderson first proposed his theory, it also led
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to many new questions about statistical mechanics. In
particular, does Anderson localization violate the ergodic
hypothesis? If states fail to diffuse, then how can such a
system thermalize?

Answering this point requires the introduction of
interactions, which creates a fundamentally different
problem3. Since Hamiltonian (1) is noninteracting, it is
integrable: there are individual conserved quantities for
every particle. We cannot meaningfully speak of ther-
malization or ergodicity in such a setting, as our system
will be forever restricted to a small manifold in phase
space.

The study of localization in interacting, disordered sys-
tems is called many-body localization. This problem has
been studied for many decades, going back to the work of
Fleishman and Anderson11. However, the modern treat-
ment of many-body localization was first given by Basko,
Aleiner, and Altshuler in 200612,13. Their work shows
that disorder can induce localization in interacting, and,

in particular, non-integrable systems. Since then, both
experiments14,15 and numerics16,17 have lent further cre-
dence to the theory of many-body localization, and it
remains an important area of study in modern physics.

The theory of Anderson localization can perhaps be
characterized by both its great impact and its theoret-
ical difficulty. It was one of the main works cited in
Anderson’s 1977 Nobel Prize, yet even in his Nobel lec-
ture, Anderson noted that ”it has yet to receive ade-
quate mathematical treatment”18. Even today, over 40
years after Anderson’s Nobel Prize and and 60 years af-
ter he first proposed the theory, Anderson localization is
still an active research topic, and there remain many un-
solved questions. It has also been the progenitor of many
important problems in physics, such as many-body local-
ization. Finally, as both numerics and quantum simula-
tion improve, we can expect to continue to learn about
Anderson localization well into the future.
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