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The performance of wind turbines can be negatively affected by the presence of un-

certainties. We introduce a comprehensive multi-physics computational model EOLO that

enables the estimation of aerodynamic and structural characteristics assiociated with hor-

izontal axis wind turbines, and use it to study the impact of uncertainties on the aerody-

namic performance and noise. We consider variability in the wind conditions, manufactur-

ing tolerances and roughness induced by insect contamination as sources of uncertainties

and treat them within a probabilistic framework using Latin Hypercube Sampling and

Stochastic Simplex Colocation. The results demonstrate that these two methods lead to a

statistical characterization of the quantity of interest which is considerably faster than clas-

sical Monte Carlo methods. In addition, we demonstrate how the uncertainties impact the

aerodynamics and noise leading to a largely inferior performance compared to the nominal

design.

I. Introduction and motivations

Wind turbine reliability plays a critical role in the long-term evolution of wind-based energy generation.
The computational assessment of failure probability or life expectancy of turbine components is fundamen-
tally hindered by the presence of large uncertainties in both the environmental conditions and blade geometry
and structure. Rigorous quantification of the impact of such uncertainties can fundamentally improve the
state-of-the-art in computational predictions and, as a result, provide aid in the design of more cost-effective
devices.

In the following we will describe a computational framework constructed around tools developed mainly
at the National Renewable Energy Laboratory (NREL). These tools are essentially deterministic: once the
wind-turbine configuration and other input conditions are specified, the solution is uniquely determined
without vagueness. On the other hand, when uncertainties are present, the results have to be expressed
in a non-deterministic fashion either probabilistically or as ranges of possible outcomes. In this work we
focus on the former, and describe the uncertainties as random variables. At this point the computations
become probabilistic in nature and it is necessary to propagate the input variability into the output of
interest (quantity of interest, QoI). The approach we follow here is strictly non-intrusive, in the sense that
the existing tools are used without modifications, but the solution - or more precisely, their probability
distributions - are constructed performing an ensemble of deterministic analysis. One of the objectives of the
present work is to compare two methodologies that aim at characterizing statistically the QoIs using a low
number of deterministic solutions compared to classical Monte Carlo schemes. The two approaches are the
Latin Hypercube Sampling (LHS) and the Stochastic Simplex Collocation (SSC) and are briefly described
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in Section III. The computational framework which has been developed and exercised in the present work is
illustrated in Section II.

It is important to note that the first step in any uncertainty quantification procedure is the identification
of the sources of uncertainties. We focus on wind conditions, blade manufacturing tolerances and insect
contamination. In Section IV we gather information from literature regarding each one of these sources and
perform analysis to assess their impact on both aerodynamic performance and noise.

II. EOLO: a multi-physics low-order model for wind turbines

Wind turbines are multi-physics devices in which the aerodynamic performance, the structural integrity
of the blades, the energy conversion toolbox and the acoustic impact have to be carefully examined to achieve
an effective design. Each one of these aspects introduces considerable hurdles for detailed simulations. The
aerodynamic performance is dominated by the design of the blade cross-sections. The sections are typically
laminar-flow airfoils to reduce the overall drag. The flow characterization is complicated by the need to
predict laminar/turbulent transition under a variety of clean and perturbed wind conditions, the inherent
angle of attack variability associated to rotation, the presence of dynamic stall, aeroelasticity, etc. In spite of
the development of advanced computational fluid dynamic tools that can predict with reasonable accuracy the
aerodynamic performance of rotors,1 the computations remain extremely expensive and often rely on simple
models to capture important effects, such as transition, and are generally not considered to be predictive
for extreme events such as stall. In this work, we focus on building a flexible computational infrastructure
based on low-fidelity models that are connected together in a matlab environment called EOLO. There are
two main advantages resulting from this choice: i) control and flexibility in using different models developed
for capturing complex phenomena, ii) low computational cost. It is the second aspect that fundamentally
enables us to perform analysis under uncertainty.

In the following we introduce the various computational tools that are used to perform the deterministic
analysis. The uncertainty quantification methodologies are described in the next section.

II.A. Aerodynamic analysis

The geometrical description of the turbine blades is based on the specification of three airfoils at the root,
mid-span and tip. Simple linear interpolation is used to construct the geometry at the other cross-sections
and the local aerodynamic (e.g. two-dimensional) analysis is carried out using a potential flow method
with interactive viscous correction. The tool we used is Xfoil9 which includes a model for boundary layer
transition based on the eN method. Xfoil is used to determine the aerodynamic force coefficients polars in
a range of angle of attacks from −15◦ to 25◦ to cover the range of incident angles experienced during a full
rotation. Xfoil is not expected to be accurate in the prediction of stall, because of the presence of extensive
flow separation and possibly unsteady effects.

Hence a correction to the polar curve is introduced, based on Viterna10 and Corrigan models which provide
a correction of the lift and drag coefficient at high angle of attack. A final correction to the aerodynamic
coefficients is employed due to the presence of finite-span effects. Here we use a modification based on the
Lanchester- Prandtl theory

CL = C
′

L; CD = C
′

D +
Cl2

πAR
; α = α

′

+
Cl

πAR
(1)

where CL and C
′

L, CD and C
′

D, α and α
′

are the finite and infinite span airfoil lift coefficients, drag coefficients
and angles of attack respectively and AR is the aspect ratio of the wind blade.

The Viterna model estimates the lift and drag coefficients (when α>αs) as follows

CL =
CDmax

2
sin 2α+KL

cosα2

sinα
; CD = CDmax sinα

2 +KD cosα (2)

KL = (CLS − CDmax sinαs cosαs)
sinαs

cosα2
s

; KD =
CDS − CDmax sinα

2
s

cosαs

(3)

where αs is the finite span airfoil stall angle, CLS and CDS are the finite span airfoil lift and drag coefficient
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Figure 1. NREL s827 airfoil (right); predictions of the lift coefficient (left) at M=0.1, Re=3e6 under natural transition
conditions.

at stall angle and CDmax is the finite span airfoil maximum drag coefficient

CDmax = 1.11 + 0.018AR AR ≤ 50

CDmax = 2.01 AR > 50
(4)

The models described above are included in a tool called Viterna which collects the polars from Xfoil

and introduces stall and finite-span corrections. The present predictions of the lift curve are reported for
the NREL S827 airfoil in Fig.1.

II.B. Structural analysis

Fluid structure interactions play an important role in the determination of the structural integrity of the
turbine blades and in the overall aerodynamic performance.

The geometrical description of the blade is used as a starting point to define span-varying properties
relevant to its composite structure. The NREL PreComp2 computes cross-coupled stiffness, inertia and offsets
of the blade shear center, tension center, and center of mass with respect to the blade pitch axis. These
quantities are then used to determine a low-order model for the rotor, tower and drivetrain shaft. Specifically,
the characteristics of a rotating-beam equivalent to the blade are computed using NREL BModes,5 a finite-
element code that evaluates the deformation modes.

II.C. Performance analysis

The Viterna corrected polars at certain nodes along the span, the flapwise and edgewise Bmodesmodal shapes
and the PreComp properties are then used as input to NREL FAST3 (Fatigue, Aerodynamics, Structures, and
Turbulence) which is a comprehensive aeroelastic simulator capable of predicting both the extreme and
fatigue loads of two- and three-bladed horizontal-axis wind turbines.

This code is based on the NREL AeroDyn4 solver, an element-level wind-turbine aerodynamic analysis
routine. It requires information on the status of a wind turbine from the dynamics analysis routine and a
wind file describing the atmospheric conditions. It returns the aerodynamic loads for each blade element to
the dynamics routines.

II.D. Wind conditions

The aerodynamic performance of wind turbines is dominated by the wind conditions. Atmospheric boundary
layers are subject to large variability in wind direction and intensity with largely unsteady dynamics and
frequent gusts. In EOLOwe generate realistic wind conditions using the NREL TurbSim6 tool, which constructs
a stochastic inflow with a precisely specific velocity fluctuation spectrum.
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II.E. Acoustic analysis

The NREL prediction of aeroacoustic noise is based on six different noise sources (Fig. 2) that are assumed to
independently generate their own noise signature. The assumption of independence is based on the idea that
the mechanisms for each noise source(namely turbulent boundary layer trailing edge, separating flow, laminar
boundary layer vortex shedding, trailing edge bluntness vortex shedding, and tip vortex formation24, 26) are
fundamentally different from each other or occur in different locations along a turbine blade, such that they
do not interfere with one another.
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Figure 2. Breakdown of the noise generated by a 50kw wind turbine at a microphone located at (x,y,z)=(-20m,0m,0m)

II.F. the EOLO matlab script

The various tools briefly described in the previous subsections are glued together in a multi-physics simulation
process using matlab. The overall driver script, EOLO handles the transfer of information between the various
tools and then collects the final outputs and computes statistics. A flowchart of the process is reported in Fig.
3; it is clear that modifications to the framework can be handled in a simple way, for example substituting
the aerodynamic performance evaluation module (Xfoil and Viterna) with a computational fluid dynamic
solver. EOLO also provides a unique interface for the entire process (from inputs to outputs) that is directly
connected to the uncertainty quantification tools presented in the next section.

III. Uncertainty analysis

The simulation environment described above can be effectively used to study wind turbine performance
in the absence of uncertainties. In this section we introduce two methodologies that enable us to characterize
the effect of variability in wind conditions, manufacturing tolerance and insect contamination. As mentioned
earlier we limit our analysis to uncertainties that can be described using random variables (aleatory uncer-
tainties) and, therefore, our goal is to construct a probabilistic framework around the EOLO environment.
The most straightforward choice is to perform Monte Carlo (MC) sampling in which many deterministic
simulations corresponding to randomly chosen wind conditions for example, are performed and a statistical
characterization is obtained directly from this ensemble. It is well known that typically a very large ensem-
ble is required to achieve convergence of the QoI statistics. In the following, we introduce two alternative
approaches that allow us to obtain equivalent results using very few EOLO simulations. In the following, we
generally refer to the input uncertain variables as ξ and refer to the space spanned by these variables as the
parameter (or probability) space to distinguish it from the space of the physical variables.

4 of 18

American Institute of Aeronautics and Astronautics



Figure 3. Multi-physics computational framework to perform analysis of wind turbine: EOLO flowchart

III.A. Latin Hypercube Sampling (LHS)

In Monte Carlo methods, a sequence ξ1, ξ2, . . ., ξn is sampled according to the probability distribution of ξ,
which is assumed to be known. Simulations are performed for each sample ξi to obtain the QoIs and build an
empirical density function that converges to the actual probability density function of the QoI as n increases.

Several methods have been developed to accelerate the MC approach. One of the most successful is
the Latin Hypercube sampling (LHS) approach. LHS is a stratified-random procedure which provides an
efficient way of sampling variables from their distributions.31 The cumulative distribution for each input
variable is divided into N equiprobable intervals. A value is selected randomly from each i− th interval and
the sampled cumulative probability can be written as:32

pi =
1

N
ru + (i− 1)N (5)

where ru is a uniformly distributed random number ranging from 0 to 1. The N values obtained for each
variable are paired randomly with the other variables to construct a sample point in the parameter space.
Unlike simple random sampling, this method ensures full coverage of each variable range by optimally strat-
ifying each marginal distribution.

III.B. Stochastic Simplex Collocation (SSC)

Due to the relatively slow convergence rate of Monte Carlo simulations, other uncertainty quantification
methods have been developed based on a polynomial approximation of the response. Stochastic Collocation
(SC) is a widely used example of such a method, which is based on sampling Gauss quadrature points and
using Lagrangian polynomial interpolation in probability space. However, due to the structured grid of the
quadrature points in multiple random dimensions, the spectral convergence of the Stochastic Collocation
method reduces significantly with an increasing number of uncertainties.

Here, the Simplex Stochastic Collocation (SSC) method7, 8 is presented that combines the effectiveness
of random sampling in higher dimensions with the accuracy of polynomial interpolation. It also leads to
the superlinear convergence behavior of Stochastic Collocation methods and the robustness of Monte Carlo
approaches. SSC discretizes the parameter space Ξ using non-overlapping simplex elements Ξj from a
Delaunay triangulation of sampling points, with Ξ =

⋃ne

j=1
Ξj , where ne is the number of elements. In

each of the simplexes Ξj , the response surface of the quantity of interest, u(ξ) as function of the random
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parameters ξ ∈ Ξ, is approximated by a polynomial wj(ξ)

wj(ξ) =

P
∑

m=0

cj,mΨj,m(ξ), (6)

with P + 1 coefficients cj,m and basis polynomials Ψj,m(ξ). The polynomials are found by interpolation
of the samples vk = u(ξk) at the vertexes ξk of the simplex elements, with k = 1, . . . , ns, where ns is the
number of samples. For higher degree interpolation a stencil of sampling points vkj,l

at the vertexes ξkj,l
of

surrounding simplexes is constructed, with l = 0, . . . , N and kj,l ∈ {1, . . . , ns}. The polynomial coefficients
cj,m are then given by


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
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, (7)

with N ≥ P. The robustness of the approximation is guaranteed by using a limiter approach for the local
polynomial degree pj , based on the extension of the Local Extremum Diminishing (LED) concept to proba-
bility space. This ensures that no overshoots are present in the response interpolation in each of the elements
Ξj

min
Ξj

(wj(ξ)) ≥ min
Ξj

(u(ξ)) ∧ max
ΞJ

(wj(ξ)) ≤ max
Ξj

(u(ξ)), (8)

for j = 1, . . . , ne. The initial samples are located at the parameter range extrema and one at the nominal
conditions, see Figure 4a for a two-dimensional example. The discretization is adaptively refined by calcu-
lating a refinement measure based on a local error estimate in each of the simplex elements. A new sampling
point is then added randomly in the simplex with the highest measure and the Delaunay triangulation is
updated. The sample is confined to a sub-domain of the simplex to ensure a good spread of the sampling
points, see Figure 4a. The refinement to ns = 17 samples, shown in Figure 4, leads to a super-linear con-
vergence by increasing the polynomial degree pj with the increasing number of available samples ns. The
sampling procedure is stopped when a global error estimate reaches an accuracy threshold.
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(b) Refined mesh for 17 samples

Figure 4. Simplex Stochastic Collocation discretization of a two–dimensional probability space.

In the wind turbine simulations and other large-scale problems, it is possible that one of the deterministic
computations for a specific sample of the random parameters does not converge or gives an unrealistic result.
For the Stochastic Collocation method such a failure of one of the quadrature samples would be a serious
problem in computing statistical moments. On the other hand, this situation forms no obstacle for SSC
owing to the flexibility of the randomized sampling. It is handled by introducing a check of the correct
execution of the samples into the algorithm. If an unconverged sample is detected, then the failed sample
computation is automatically restarted for another randomly sampled point in the refined simplex element.
In the analysis performed in this paper, this has proven to be an effective approach for dealing with erroneous
samples, which shows the flexibility of the SSC method in complex computational problems.
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IV. Data assimilation

IV.A. Uncertain meteorological conditions

The energy produced by a wind turbine is usually expressed as an annual average. Since production falls
off dramatically as the wind speed drops, most of the time the wind turbine is producing well below its
expected rate.16 It is important to characterize the wind turbine behavior resulting from the measured wind
variability to assess the effective performance.

For land based turbines, the wind speed distribution is usually approximated by a Weibull fit.11 As an
example, Downey15 extracted data from the database http://winddata.com of eight sites that have wind
speed measurements above 60 m in height.
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Figure 5. Wind speed, direction and turbulence intensity at the Acqua Spruzza, Italy site. The data is reported in
terms of empirical probability distributions scaled from 40 to 24 meters.

Following the same approach we extracted nominal wind speed, turbulence intensity and direction data
at a site (Acqua Spruzza, Italy) where a wind turbine farm was built by ENEL S.p.A. to evaluate the
performance of commercial medium-sized turbines operating in complex terrain and very hostile climate.
A large collection of wind measurements is summarized in Fig. 5 in terms of wind speed and direction
and turbulence intensity. The histograms of these three random variables are used directly as input for
the uncertainty propagation methods described previously, after being converted into continuous probability
density functions (for each of the input variables) via linear interpolation. Note that no information regarding
the correlation of the three random variables is available, and therefore we assume that the inputs are
independent.

The wind data readily available provide an estimate of the wind speed at a certain height. To construct
the wind conditions at the actual rotor hub height ( ≈ 24 meters) we use a classical13 scaling law:

U(z2)

U(z1)
=

ln(z2/z0)−Ψ(Z2/L)

ln(z1/z0)−Ψ(Z1/L)
(9)

where L is the Monin-Obukhov length [m], U is the wind speed [m/s], z is the height [m], z0 is the terrain
roughness [m] and Ψ is the stability function.16 Eq. (9) uses a logarithmic velocity profile dependent
on terrain roughness z0 plus an atmospheric stability correction Ψ dependent on the ratio of height, z, and
Monin Obukhov length, L. Turbulence may be produced by shear (speed differences) or by buoyancy (density
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differences); the length L is the height at which shear and buoyancy produce the same amount of turbulent
kinetic energy. The Monin-Obukhov length L must be estimated. When the wind speed is sufficiently high
(above 6m/s ) thermal effects play no role above land, and neutrality may be assumed,14 Ψ = 0. In this
case the wind speed follows a logarithmic profile determined by terrain roughness z0 and Eq. (9) reduces to

U(z2)

U(z1)
=

ln(z2/z0)

ln(z1/z0)
(10)

The roughness of the terrain z0 may be estimated with the Petersen classification12 or from measurements
of turbulence intensity I at some reference height zr , using:

z0 = zrexp(
−1

I(zr)
) (11)

IV.B. Insect contamination

Several studies on wind turbines17–20 and fixed wings21, 22 illustrate the effect of insect and dirt contamination
on the overall aerodynamic performance. Insects are present in the lower layer of the atmosphere, with a
density rapidly decreasing from ground level to 500 ft. Hardy and Milnecite23 found that the morphology
of insects is a function of the altitude and that estimation of the actual contamination depends on the
operating conditions. In wind-turbines the effect of contamination can be particularly strong when the
blade cross-sections are designed to support mostly laminar flows. The presence of insect contamination
produces boundary layer disturbances that can lead to early transition to turbulence with a deterioration of
the aerodynamic performance. This is the motivation for including insect contamination as a leading cause
of uncertainty in the analysis of wind turbines.

Crouch et al25 studied experimentally the effects of surface protrusions (steps) on the transition to
turbulence in boundary layers. They also modified the eN method to capture the observed transition
modifications, via a reduction of the critical N-factor:

Ncrit = Ncrit0 −∆Ncrit(
h

δ∗
) (12)

where h is the height of the step (i.e. the accumulated insect height)[m], δ∗ is the boundary layer displacement
thickness at the step location [m], ∆Ncrit accounts for the local change in the stability characteristics at the
step[-] and Ncrit0 is the clean value of the critical n-factor[-].

In this work we assume that the insect impact produces a roughness that leads to a possible modification of
the N-factor. We consider three independent variables describing the N-factor ranging from clean conditions
(Ncrit = 9) to transition bypass (Ncrit = 1) at the root, midspan and tip sections.

IV.C. Manufacturing tolerances

There is a general agreement that airfoil shape, twist and chord length imperfections are detrimental to
aerodynamic performance, but only limited quantitative data is available in the open literature about their
origin and quantitative effects. Loeven and Bijl30 used a Polynomial Chaos Framework for the quantification
of airfoil geometrical uncertainties. Ilinca, Hay, and Pelletier27 treat shape sensitivities of unsteady laminar
flow around a cylinder in ground proximity. Etienneet al28 investigated shape sensitivities of flexible plates
in a flow domain. Gumber, Newman, and Hou29 included first order moments in robust design optimization
of a 3D flexible wing with uncertain wing geometry. The geometry of a manufactured wind turbine airfoil is
generally different from the nominal design mainly because of manufacturing tolerances. It is generally diffi-
cult to characterize probabilistically the effect of these tolerances; in this work we focus on errors associated
with the protusion process, where the blade is constructed as a sequence of cross-section. We assume that
the twist of the blade (the section orientation with respect to a nominal plane) is imprecise. As before, we
assume that we can describe the uncertainty using three independent parameters (with uniform probability
distributions ranging from −2◦ to 2◦) associated to the twist at the root, the midspan and the tip section.

V. Analysis under uncertainty

The AOC 15/50 is a downwind turbine, i.e. its blades rotate downwind of the drive train assembly.
Furthermore, it has no active yaw control and depends on its blades to track the wind. This wind turbine is
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the evolution of the rugged and reliable Enertech E44, many of which were installed in the 1980’s and are still
running today. Independent analysis and testing at NREL, the Netherlands Energy Research Foundation
(ECN), RISO Laboratory in Denmark, the Atlantic Wind Test Site (AWTS) on Prince Edward Island
and other sites around the world verify that the AOC 15/50 wind turbine generators are very reliable in
even the harshest weather conditions. The AOC 15/50 is designed for simplicity to minimize maintenance
requirements and to be able to safely operate in normal and extreme conditions. The principal characteristics
of the AOC 15/50 can be found in Table 1.

Table 1. AOC 15/50 wind turbine, principal characteristics

Type Grid Connected

Configuration Horizontal Axis

Axis Rotor Diameter 15 m

Centerline Hub Height 25 m

Rated Electrical Power 50 kW @ 11.3 m/s

Cut in [-] 4.6 m/s

Shut down (high wind) 22.4 m/s

Type of Hub Fixed Pitch Rotor

Diameter 15 m

Swept Area 177 m2

Number of Blades 3

Rotor Solidity 0.077

Rotor Speed @ rated wind speed 65 rpm

Location Relative to Tower Downwind

Cone Angle 6o

Tilt Angle 0o

Rotor Tip Speed 51 m/s @ 60 Hz

Design Tip Speed 6.1

Length 7.2 m

Material Epoxy /glass fibre

Airfoil (type) NREL, Thick Series, modified

Twist 7o

Blade Weight 150 kg approximate

Yaw Free, rotates 360 degrees

V.A. Uncertain meteorological conditions

In this section the AOC 15/50 has been investigated using the uncertain meteorological conditions of Figure 5.
In this case EOLO is driven by the SSC routines and the uncertainties are injected trough Turbsim; the
statistics are constructed performing an ensemble of deterministic analysis. For reasons of economy, the
wind history during the turbine’s approximately twenty year life is reduced to 10 minute periods (or load
cases) at each wind speed.16 The latitude chosen for the turbulence model is 41 degrees, matching the data
extracted from the Acqua Spruzza site. The Von Karman spectral model for the meteorological boundary
conditions has been chosen in this application, assuming neutral atmospheric condition.33, 34 The AOC 15/50
deterministic conditions chosen as reference in this work are illustrated in Table 2.

The Monte Carlo samples on the response surface obtained by the simplex reconstruction are shown in
Figure 6; the reader can notice that the samples follow the input distribution of Figure 5.

A three color (red to blue) map has been introduced to relate the samples to the effective value of the
power coefficient in the domain: the red points correspond to high power extracted by the wind turbine. The
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Table 2. AOC 15/50 wind turbine, deterministic conditions

Wind speed 6 m/s

Turbulence intensity 5%

Wind direction 0o

Latitude 41o

Working time 10 min

Rotor speed 55 rpm

map reveals that improved efficiency is achieved for moderate wind speeds (5-12 m/s) and low turbulence
levels (2-10 percent), while other conditions lead to decreased performance.
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Since the cut-off speed of the AOC 15/50 is 22.4 m/s, placing the wind turbine in the site of interest would
likely lead to off-design operating conditions: the average power coefficient drops from 0.4596 to 0.2776.

The resulting cumulative probability distribution functions (CDF) for the power coefficient and the
sound pressure level as a result of the varying meteorological conditions are shown in Figure 7. The output
CDFs show approximately uniform distributions, in contrast with the input density for the meteorological
conditions of Figure 5. The probability distributions fall completely below the deterministic characteristics
of the wind turbine (Table 2) given by the vertical lines. The uncertain output for the power coefficient
ranges from approximately 0 to the deterministic value of approximately 0.45. The sound pressure level
varies uniformly between 34 to 45 dB. These results show that the realistic uncertainty in the wind speed,
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Figure 7. Meteorological conditions: cumulative density function of the power coefficient and Sound Pressure Level.
The red lines represent the deterministic conditions.

direction, and turbulence intensity has a large impact on the wind turbine performance.
The convergence of the mean and standard deviation of the power coefficient and sound pressure level is

shown in Figures 8 and 9 up to 70 samples in the SSC discretization. The mean values of the two outputs
show fast convergence in the first 20 samples to a value significantly lower than the deterministic value.
Increasing the number of deterministic solves to 70 does not significantly change the mean value. This
is confirmed by the decreasing error estimate intervals with an increasing number of samples. The higher
moment of the standard deviation shows, as expected, a slower convergence up to 40 samples with a relatively
larger error estimate margin.
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Figure 8. Meteorological conditions: convergence histories of the mean,variance and error of the power coefficient
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Figure 9. Meteorological conditions: convergence histories of the mean,variance and error of the Sound Pressure Level

The values for the mean and standard deviation at 70 samples are also compared to the nominal clean
configuration in Table 3. Due to the uncertainty the mean power output almost halves, while the sound level
is only moderately lower than the deterministic values. This demonstrates that the uncertain meteorological
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conditions result in a significant reduction of the power performance of the wind turbine, which shows the need
to optimize the wind turbine design under uncertain operating conditions. The relatively large coefficients
of variation in the power coefficient and the sound pressure level up to 42.8% and 8.1%, respectively, are
also reported.

Table 3. Analysis under uncertain meteorological conditions

Objective Mean Standard deviation Coefficient of variation Clean configuration

# Power Coefficient [-] 0.2776 0.1189 0.4283 0.4596

# Sound Pressure Level [db] 40.4530 3.2853 0.0812 44.711

V.B. SSC and LHS: a comparison

The convergence histories for the mean and standard deviation of the power coefficient and sound level are
more closely examined in Figures 10 and 11.
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Figure 10. Meteorological conditions: comparison of the mean and variance of the power coefficient for two different
SSC and two different LHS
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Figure 11. Meteorological conditions: comparison of the mean and variance of the Sound Pressure Level for two
different SSC and two different LHS

The results of SSC and LHS are shown for two independent ensembles to illustrate the relative sensitivity
as both methods rely on random sampling. This is clearly visible in the LHS results for the power in Figure 10
given a small number of samples (up to 40). For a larger sample size the two LHS results show improved
agreement. The variations in the SSC results for the power coefficient are smaller than for LHS.

For the mean power output, the two methods show good agreement. The prediction of the standard
deviation by LHS and SSC show a slightly different value, because we hypothesize that more than 60
samples are required to obtain convergence. The results for the sound level in Figure 11 show a relatively
larger variation between the SSC runs and also gives a larger standard deviation output for LHS than for
SSC.
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V.C. Insect contamination

In this section the AOC 15/50 is investigated using the uniform distributions of section IV.B. In this case
EOLO is driven by the SSC routines and the uncertainties are injected through the aerodynamic coefficients
computed in Xfoil.

The Monte Carlo samples on the response surface obtained by the simplex reconstruction are shown in
Figure 12; the spread of the samples follows the uniform input distribution.
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Figure 12. Monte Carlo samples for insect contamination

The colormap reveals that higher values of the n-critical factor (e.g. lower contamination) at tip region,
ξ3 primarly, as well as at mid-span region,ξ2, lead to better performance: this can be justified due to the
highest contribution of the outer airfoils to the mechanical torque at the shaft.

This analysis illustrates a reduction of up to 16% in the power coefficient (Figure 13) due to the insect
contamination, while in the literature an effect of up to 50% has been reported.17, 18 This difference might
be due to the present approach used to characterize the effect of the insect contamination. The variation of
the perceived level of noise due to this source of uncertainty can be neglected.

Figure 15 and Figure 16 show the SSC convergence of the mean and the standard deviation of the output
of interest. The error estimate is lower under uncertain meteorological conditions, therefore a smaller number
of simplex points could have been used.

The mean, standard deviation and coefficient of variation of the analysis under insect contamination are
summarized in Table 4.
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Figure 13. Insect contamination: cumulative density function of the power coefficient and Sound Pressure Level
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Figure 14. Insect contamination: convergence histories of the mean,variance and error of the power coefficient
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Figure 15. Insect contamination: convergence histories of the mean,variance and error of the Sound Pressure Level

Table 4. Analysis under insect contamination

Objective Mean Standard deviation Coefficient of variation Clean configuration

# Power Coefficient[-] 0.4340 0.0162 0.0373 0.4596

# Sound Pressure Level[db] 44.6505 0.0738 0.0017 44.711

V.D. Manufacturing errors

In this section the AOC 15/50 is investigated using the uniform distributions of section IV.C. In this case EOLO
is driven by the SSC routines and the uncertainties are injected through the geometry pre-processor. The
Monte Carlo samples on the response surface obtained by the simplex reconstruction are shown in Figure 12;
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similar to the insect contamination case, the samples have a uniform distribution in the probability space.
The colormap reveals that decreasing the twist in the mid-span region, ξ2, leads to better performance: this
can justify a novel robust shape optimization involving the twist distribution.
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Figure 16. Monte Carlo samples for manufacturing errors

In this framework we observed a reduction of the power coefficient by up to 7% (Figure 17) with negligible
change in the perceived noise.
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Figure 17. Manufacturing errors: cumulative density function of the power coefficient and Sound Pressure Level

Figure 18 and Figure 19 show the SSC convergence of the mean and standard deviation of the output of
interest, revealing that 30 simplex points would have been enough for this analysis.

The mean, standard deviation and coefficient of variation of the analysis under manufacturing errors are
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Figure 18. Manufacturing errors: convergence histories of the mean,variance and error of the power coefficient
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Figure 19. Manufacturing errors: convergence histories of the mean,variance and error of the Sound Pressure Level

summarized in Table 5.

Table 5. Analysis under manufacturing errors

Objective Mean Standard deviation Coefficient of variation Clean configuration

# Power Coefficient[-] 0.4560 0.0071 0.0156 0.4596

# Sound Pressure Level[db] 44.7189 0.2216 0.0050 44.711

The simplex points in probability space for uncertain meteorological conditions, insect contamination
and manufacturing errors are represented in Figure 20.

VI. Conclusions

The present study is the first step of a comprehensive analysis of wind turbine performance under uncer-
tainty. We constructed a multi-physics low-order model EOLO that includes aerodynamic predictions, com-
prehensive structural analysis and acoustic estimation. We identified three sources of uncertainty, namely
wind condition, insect contamination and manufacturing tolerances, and successfully estimated their effect
on aerodynamic performance and noise. Specifically, we demonstrate how the present uncertainties lead
to a general decrease in performance with respect to the nominal (design) scenario. This penalization is
also compounded with a likely variation in noise. These results indicate that design and optimization steps
should include a comprehensive estimation of the uncertainties in order to achieve robust performance. An
additional objective of the paper was to compare Latin Hypercube Sampling and Stochastic Simplex Collo-
cation for propagating uncertainties in complex computational models. Both methods outperform classical
Monte Carlo and the SSC approach leads to stable statistics requiring only a few dozen EOLO simulations.
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Figure 20. Simplex points in probability space.
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